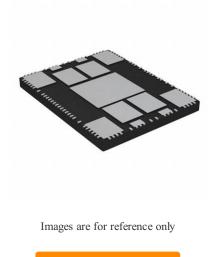


STM32WB55RGV6

BT+ZigBee Chip 2405MHz to 2480MHz 68-Pin VFQFPN EP Tray


Manufacturer: <u>STMicroelectronics, Inc</u>

Package/Case: VFQFPN68

Product Type: RF Integrated Circuits

RoHS: RoHS Compliant/Lead free RoHS

Lifecycle: Active

Inquiry

General Description

The STM32WB55xx multiprotocol wireless and ultra-low-power devices embed a powerful and ultra-low-power radio compliant with the Bluetooth® Low Energy SIG specification v5.0 and with IEEE 802.15.4-2011. They contain a dedicated Arm® Cortex® -M0+ for performing all the real-time low layer operation.

The STM32WB55xx devices are designed to be extremely low-power and are based on the high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to 64 MHz. The Cortex®-M4 core features a Floating point unit (FPU) single precision that supports all Arm® single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) that enhances application security.

Enhanced inter-processor communication is provided by the IPCC with six bidirectional channels. The HSEM provides hardware semaphores used to share common resources between the two processors.

The STM32WB55xx devices embed high-speed memories (up to 1 Mbyte of Flash memory, up to 256 Kbyte of SRAM), a Quad-SPI Flash memory interface (available on all packages) and an extensive range of enhanced I/Os and peripherals.

Direct data transfer between memory and peripherals and from memory to memory is supported by fourteen DMA channels with a full flexible channel mapping by the DMAMUX peripheral.

The STM32WB55xx devices feature several mechanisms for embedded Flash memory and SRAM: readout protection, write protection and proprietary code readout protection. Portions of the memory can be secured for Cortex® -M0+ exclusive access.

The two AES encryption engines, PKA and RNG enable lower layer MAC and upper layer cryptography. A customer key storage feature may be used to keep the keys hidden.

The devices offer a fast 12-bit ADC and two ultra-low-power comparators associated with a high accuracy reference voltage generator.

These devices embed a low-power RTC, one advanced 16-bit timer, one general-purpose32-bit timer, two general-purpose 16-bit timers, and two 16-bit low-power timers.

In addition, up to 18 capacitive sensing channels are available. The devices also embed an integrated LCD driver up to 8x40 or 4x44, with internal step-up converter.

The STM32WB55xx devices also feature standard and advanced communication interfaces, namely one USART (ISO 7816, IrDA, Modbus and Smartcard mode), one low- power UART (LPUART), two I2Cs (SMBus/PMBus), two SPIs (up to 32 MHz), one serial audio interface (SAI) with two channels and three PDMs, one USB 2.0 FS device with embedded crystal-less oscillator, supporting BCD and LPM and one Quad-SPI with execute-in-place (XIP) capability.

The STM32WB55xx operate in the -40 to +105 °C (+125 °C junction) and -40 to +85 °C (+105 °C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes enables the design of low-power applications.

The STM32WB55xx include independent power supplies for analog input for ADC.

The STM32WB55xx integrate a high efficiency SMPS step-down converter with automatic bypass mode capability when the V_{DD} falls below V_{BORx} (x=1, 2, 3, 4) voltage level (default is 2.0 V). It includes independent power supplies for analog input for ADC and comparators, as well as a 3.3 V dedicated supply

input for USB.

A V_{BAT} dedicated supply allows the devices to back up the LSE 32.768KHz oscillator, the RTC and the backup registers, thus enabling the STM32WB55xx to supply these functions even if the main V_{DD} is not present through a CR2032-like battery, a Supercap or a small rechargeable battery.

The STM32WB55xx offers four packages, from 48 to 129 pins.

Key Features

Ultra-low-power platform

Core: Arm 32-bit Cortex-M4 CPU with FPU, adaptive real-time accelerator (ART Accelerator) allowing 0-wait-state execution from Flash memory, frequency up to 64 MHz, MPU, 80 DMIPS and DSP instructions

Performance benchmark

Energy benckmark

Supply and reset management

BAT

Clock sources

Recommended For You

Recommended For Tou			
STA013	STPCI2GDYI	STDP8028-AB	
STMicroelectronics, Inc	STMicroelectronics, Inc	STMicroelectronics, Inc	
SOP28	BGA	BGA	
STM8AF52AATCX	STM8AF5289TCX	STMB2WB55RCV6	
STMicroelectronics, Inc	STMicroelectronics, Inc	STMicroelectronics, Inc	
LQFP100	LQFP-64	QFN68	
STMB2WLE5CCU6	STMB2WB55VGQ6	STM32WB55VGY6TR	
STMicroelectronics, Inc	STMicroelectronics, Inc	STMicroelectronics, Inc	
QFN48	BGA129	WLCSP100	
STMB2WB35CEU6A	STMB2WL55CCU6	STM32WB10CCU5	
STMicroelectronics, Inc	STMicroelectronics, Inc	STMicroelectronics, Inc	
UFQFPN-48	UFQFN48	QFN48	
STMB2MP151AAD3	STM32MP157CAC3	STM32WB55CGU6TR	
STMicroelectronics, Inc	STMicroelectronics, Inc	STMicroelectronics, Inc	
BGA257	TFBGA361	QFN48	