
Application Note
Debugging Sitara AM2x Microcontrollers

Eyal Cohen and Sahin Okur

ABSTRACT

This application note covers the various debugging tools and techniques available to users developing
applications with Sitara™ AM2x microcontrollers (MCUs).

Table of Contents
1 Building for Debug..2

1.1 Disable Code Optimization...2
1.2 Using the Debug SDK Libraries... 2

2 Code Composer Studio Stop-Mode Debugging...2
2.1 Configuring the Debugger.. 2
2.2 Breakpoints and Watchpoints...2
2.3 Inspecting Device Registers...3
2.4 Inspecting Disassembly... 3

3 Debug Logging..4
3.1 Logging Methods..4
3.2 Log Zones.. 5
3.3 Asserts... 5
3.4 Example Usage..5

4 Multi-Core Debug..6
4.1 Grouping Cores..6
4.2 Using Multiple Workbench Windows..6
4.3 Global Breakpoints...6

5 Debugging Arm Cortex-R5 Exceptions...7
5.1 Exception Priority Order... 7
5.2 Aborts...7
5.3 Fetching Core Registers Inside an Abort Handler..14

6 Debugging Arm Cortex-M4 Exceptions.. 15
6.1 Exception Entry and Exit Sequence...16
6.2 Faults Handling.. 17

7 Debugging Memory.. 27
7.1 Viewing Device Memory...27
7.2 Linker Command File (linker.cmd)... 27
7.3 Stack Overflow... 30
7.4 Variables and Expressions View in CCS..31
7.5 Understanding Your Application's Memory Allocation..32
7.6 FreeRTOS ROV... 33

8 Debugging Boot..34
8.1 ROM Boot.. 34
8.2 SBL Boot.. 35
8.3 GEL Files... 35

9 Debugging Real-Time Control Loops... 37
9.1 Trace.. 37
9.2 Code Profile / Coverage...40
9.3 Real-Time UART Monitor... 41

10 E2E Support Forums.. 53

Trademarks
Sitara™ and Code Composer Studio™ are trademarks of Texas Instruments.

www.ti.com Table of Contents

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 1

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Arm® is a registered trademark of tm.
Cortex® is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
All trademarks are the property of their respective owners.

1 Building for Debug
This section covers how to build your application for optimal debugging.

1.1 Disable Code Optimization
Before debugging your code, disable any compiler optimization. When compiler optimization is enabled, stepping
through code can become unpredictable, and breakpoints sometimes cannot be set to the exact line in the
C source code. This is because the optimizer can condense code and impact the correlation between the
assembly instruction and the C source. Due to this, the recommendation is to turn off compiler optimization
when stepping through code.

To disable compiler optimization, go to your project's properties > Build > Arm Compiler > Optimization, and
set the optimization level to none or 0. If building with makefiles, this can be done by modifying the makefiles
directly. For MCU+ SDK, this is typically done within the submodule's makefile (not the top-level makefile).

1.2 Using the Debug SDK Libraries
The SDK provides two versions of libs: "Debug" and "Release". The "Debug" version is built with optimization
disabled, while the "Release" version is built with optimization enabled. The recommendation is to use the
"Debug" version of an SDK lib when debugging.

The SDK libs follow the naming convention: "{library name}.{device}.{core}.{compiler}.{version}.lib"

For example, "drivers.am243x.m4f.ti-arm-clang.release.lib" implies the following:

• Library Name: Drivers Library
• Device: AM243x MCU
• Core: Arm® Cortex®-M4F Core
• Compiler: TI Arm Clang Compiler
• Version: Release

The libraries that are linked to your project can be configured in the project properties under Build > Arm Linker >
File Search Path.

2 Code Composer Studio Stop-Mode Debugging
This section covers the key debug features offered by Code Composer Studio™ (CCS) for stop-mode
debugging. Stop-mode debugging refers to debugging where stopping or halting the core is involved, as
opposed to real-time debugging, which involves debugging without stopping the core (real-time debug is
discussed in this application note in a later section).

2.1 Configuring the Debugger
The chip can be debugged using CCS via the JTAG port. If using a Sitara AM2x MCU evaluation board, you can
use the on-board JTAG debug probe. There is also typically support for using your own JTAG debug probe via
an external header.

To setup your board and debugger for CCS debug, see the EVM Setup section of the MCU+ SDK Getting
Started guide for your device to setup your board and debugger for CCS debug.

2.2 Breakpoints and Watchpoints
This section covers breakpoints and watchpoints and how to use them.

Breakpoints are program locations where the processor must halt so that debugging can occur. Both hardware
and software break points allow the core to halt at a given PC location.

Watchpoints are breakpoints that can be triggered to halt program execution when a particular memory read
or write occurs. Watchpoints are extremely useful to catch exceptions, invalid memory boundary accesses,
overrun buffers, and so forth and can be set to access any memory region, including Memory Mapped Registers
(MMRs).

Building for Debug www.ti.com

2 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

2.2.1 Software Breakpoints

A Software breakpoint is implemented as an opcode replacement. The debugger modifies the opcode by
inserting an estop_0 instruction where the previous instruction was. The program counter stops immediately
before it executes the software breakpoint instruction. In general, this instruction is hidden from the main
interface, but in certain instances this instruction is displayed in the Disassembly View. Software breakpoints can
only be set in memory regions with write access (RAM), therefore, there is no theoretical limit to the number of
software breakpoints that can be used.

To toggle a breakpoint, either double-click on the left side of either the line number in the source code view or the
address in the disassembly view, or right-click → Toggle Breakpoint.

CCS allows you to single-step through the code in your program. With the breakpoint set, select Run > Step Into
to step into a given function.

You can also select Run > Step Over that executes the function in a single step. This is useful when you do not
want to enter a certain function when single-stepping through code.

2.2.2 Hardware Breakpoints

A Hardware breakpoint is implemented internally by the target hardware. The method used to do this is heavily
dependent on the device or core, but typically the debugger writes the address to a register on the device and
sets a flag to enable breakpoints. These registers are not exposed to the IDE. A hardware breakpoint can be
set in any memory type (RAM, Flash or ROM), but it is limited by the number of registers on the device. This is
mandatory for the types of console I/O devices. Hardware breakpoints can also have a count, which determines
the number of times a location is encountered before a breakpoint is generated. For example, if the count is
2, a breakpoint is generated every second time. Hardware breakpoints make use of dedicated registers and
hence are limited in number. The AM243x supports 8 hardware breakpoints and 8 watchpoints. To see how
many hardware breakpoints and watchpoints are supported per device family, see the device-specific technical
reference manual.

2.2.3 Watchpoints

Watchpoints are a special category of hardware breakpoints that can be triggered for a particular memory read
or write. Watchpoints are extremely useful to catch exceptions, invalid memory boundary accesses, overrun
buffers, and so forth and can be set to access any memory region, including Memory Mapped Registers
(MMRs).

To set a Watchpoint, highlight a variable in the source code editor, right click and select Breakpoint → Hardware
Watchpoint. For example, right click on the variable gGpioIntrDone and add a watchpoint. Whenever you press
the general-purpose input/output (GPIO) push button, a breakpoint will trigger when gGpioIntrDone increments
at the line gGpioIntrDone++; in GPIO_bankIsrFxn().

A common issue causing software instability is stack overflow. When building a project, the stack size is typically
specified in the project linker, that corresponding size is allocated for the stack by the linker. A hardware
watchpoint can be set to monitor when the location __STACK_END - 2 is written to, which indicates that a stack
overflow has occurred.

2.3 Inspecting Device Registers
To open the Registers view: View → Registers.

The Registers view allows for viewing and editing the contents of core and peripheral registers of the device,
including bitfields and individual bits.

Type Ctrl+F or right click → Find to search for any register in the register window.

2.4 Inspecting Disassembly
This section covers how to use the CCS Disassembly view to get further insight into your running software.

The CPU opcodes of the software executing on the target can be viewed in the Disassembly window (View →
Disassembly) of the core. Assembly step into and step over buttons in the debug window can be used to step
through the disassembly.

www.ti.com Code Composer Studio Stop-Mode Debugging

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 3

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

The Disassembly view contains several points of information:

• Line numbers of the source file in context
• C source code at the line number
• Program addresses
• Breakpoint indicators
• Program Counter - the next instruction to be executed
• Opcodes in hex format
• Disassembled instructions
• If the opcode references a function or variable, their names are also shown

3 Debug Logging
This section covers the various options supported for debug (printf-style) logging.

3.1 Logging Methods
The Driver Porting Layer (DPL) of the SDK contains a Debug Log module that provides APIs for debug logging
and is the recommended method for providing "printf" style logging. These options can be configured in the
SysConfig GUI under TI Driver Porting Layer (DPL) → Debug Log.

There are 3 logging methods supported by the Debug Log module:

• CCS Console Logging (via JTAG) – To enable logging to the CCS Console, check "Enable CCS Log" in the
SysConfig window. To open the console in CCS, click View → Console.

• UART Logging - To enable UART logging, check "Enable UART Log." This automatically adds a universal
asynchronous receiver/transmitter (UART) driver instance to be used with the logger.

To view the UART Log output, open the CCS Terminal by going to View → Terminal. In the Terminal window,
click "Open a Terminal" and configure the Terminal based on the UART settings in SysConfig.

The default UART terminal settings are:

Parameter Value
Baud Rate 115200

Data Length 8-bit

Parity Type None

Stop Bit 1-bit

Flow Control None

Debug Logging www.ti.com

4 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

• Shared Memory Logging - The Shared Memory Logger allows you to share and output logs with other cores
in the device.
– Shared Memory Log Writer - Logs the debug output to shared memory. Another core should have the

Shared Memory Log Reader enabled to read the debug log strings.
– Shared Memory Log Reader (FreeRTOS only) - Reads the string logged by another core and outputs it to

the logs selected on the core. This needs task support so the reader core needs to be running FreeRTOS

A core can only be designed as a reader or writer, not both. When a core has the Shared Memory Log Reader
enabled, the option to use the Shared Memory Writer is ignored. When the Shared Memory Logger is enabled,
SysConfig generates the shared memory section to be used for logging in ti_dpl_config.c.

`DebugP_ShmLog gDebugShmLog[CSL_CORE_ID_MAX] __attribute__((aligned(128),
section(".bss.log_shared_mem")));`

This section .bss.log_shared_mem from the above code snippet needs to be reserved for shared memory
logging and needs to be allocated at the same shared memory address location for all cores. This section is
reserved in the linker command file. This section also needs to be marked as non-cache in the MPU/MMU
module within SysConfig.

3.2 Log Zones
The Debug Log module has support for "Log Zones", which allows for enabling and disabling different types of
debug log messages. These Log Zones are used in the SDK drivers but can also be used in the application. The
following Log Zones are supported:

• Error Log Zone
• Warning Log Zone
• Info Log Zone

Having the debug log messages separated into different zones provides the ability to easily change the verbosity
of the drivers.

3.3 Asserts
The Debug Log module allows for assert testing, If a given expression is evaluated to 0, the application disables
the interrupts and loop forever. The application also logs the file name and line number where the assert
occurred.

3.4 Example Usage
Include the below file to access the APIs:

#include <stdio.h>
#include <kernel/dpl/DebugP.h>

Example usage for assert:

void *addr = NULL
/* This will assert when address is NULL */
DebugP_assert(addr!=NULL);

Example usage for logs:
Uint32_t value = 10;
char *str = "Sitara AM2x debugging";
/* Use snprintf to format the string and then call logging function */
DebugP_log("This is %s and value is = %d", str, value);

Example usage for scanf:
DebugP_log("Enter a 32b number \r \n");
value32 = 0;
DebugP_scanf("%d", &value32);
DebugP_log("32b value = %d\r\n", value32);

www.ti.com Debug Logging

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 5

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

4 Multi-Core Debug
The Debug view displays the stack frames for each debuggable core on a multi-core target. Most of the various
views in the Debug perspective (Register, Variables, Disassembly, Memory Browser, and so forth) reflect the
context of the highlighted stack frame for the specified core.

4.1 Grouping Cores
Commands can be sent to a specific set of cores at the same time. This can be done by "grouping" the cores of
interest in the Debug view.

4.1.1 Fixed Group

Once a debug session is started, you can create a more permanent group. This Fixed Group has a specific
node in the Debug view that has its own debug context. Selecting this group debug context causes debug
commands to be sent to all group members without the need to select them individually. Note, that while
the commands are sent simultaneously, how synchronously the commands are executed depends on if the
hardware target itself supports synchronous execution.

In the screenshot below, a Fixed Group is created for just the first and second CPUs in the Debug view by
multi-selecting them and then using the Group core(s) option:

This causes a new group called Group 1 to appear in the Debug view, with the CPUs members.

4.1.2 Hiding Cores

It is possible to filter the list of CPUs visible in the Debug view that will not be used. This helps to avoid clutter in
the view to avoid accidentally selecting a debug context of a CPU that is not to be used. To hide CPUs:

1. Multi-select the CPUs to hide, right-click and select Hide core(s) in the context menu.
2. Selected CPUs will disappear from the view,
3. Unhide all CPUs with Show all cores option,

Note that you can set this filter before starting a debug session by specifying which CPUs to display in the
Debug Configuration

4.2 Using Multiple Workbench Windows
Multiple main windows (called Wordbench windows) can be treated to have each window dedicated to a
specified core during the debug session. A new window can be created using the Window → New Window
option. A Workbench window has its own debug context (Workbench window 1 can show data for core 1 while
Workbench window 2 shows data for core 2, and so forth). Note that creating a new window does not mean a
new debug session. Each window is associated with the same debug session but can be specified, using the
Debug view, to reflect the context of a different core.

4.3 Global Breakpoints
Each debug context can be configured for Global Breakpoints. This feature essentially makes breakpoints
global across all debug contexts that have it enabled. For example, if the debug contexts for CPU 1 and 3 have
global breakpoints enabled, and CPU 1 hits a breakpoint, CPU 3 will also be halted (if it was running). And vice
versa.

The screenshot below shows an example of enabling global breakpoints for the whole group. This enables
global breakpoints for each CPU in the group:

Multi-Core Debug www.ti.com

6 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

5 Debugging Arm Cortex-R5 Exceptions
This section covers the various exceptions that can occur on the Arm Cortex-R5 core and the techniques to
debug them.

An “Exception” is an event that makes the processor temporarily halt the normal flow of program execution,
for example, to service an interrupt from a peripheral. Before attempting to handle an exception, the processor
preserves the critical parts of the current processor state so that the original program can resume when the
handler routine has finished. In practical situations, exceptions can be mainly categorized into the following:

• Interrupts (Normal Interrupts IRQs and Fast Interrupts FIQs/NMIs)
• Aborts (Data Abort, Prefetch Abort)
• Undefined Instruction (UNDEF) exceptions

5.1 Exception Priority Order
When several exceptions occur simultaneously, they are serviced in a fixed order of priority. Each exception is
handled in turn before execution of the user program continues. It is not possible for all exceptions to occur
concurrently. For example, the Undefined Instruction and SVC exceptions are mutually exclusive because they
are both triggered by executing an instruction. Because the Data Abort exception has a higher priority than
the FIQ exception, the Data Abort is actually registered before the FIQ is handled. The Data Abort handler is
entered, but control is then passed immediately to the FIQ handler. When the FIQ has been handled, control
returns to the Data Abort handler. This means that the data transfer error does not escape detection as it would if
the FIQ were handled first.

Exception Priority
Reset 1 (Highest)

Data Abort 2

FIQ 3

IRQ 4

Prefetch Abort 5

SVC 6

Undefined Abort 6 (lowest)

5.2 Aborts
When an abort happens, the program gets halted at the Exception Vector Table in address 0xFFFF00##:

Value of V bit Exception vector base location
0 0x00000000

1 (HIVECS) 0xFFFF0000

The last two nibbles in the address (0xFFFF00##) indicates the type of abort as shown.

Exception Offset From Vector Base
Reset 0x00

Undefined Instruction 0x04

Software Interrupt 0x08

Abort (prefetch) 0x0C

Abort (data) 0x10

IRQ 0x18

www.ti.com Debugging Arm Cortex-R5 Exceptions

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 7

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Exception Offset From Vector Base
FIQ 0x1C

All exceptions end up in the address specified in the Exception Vector Table. The program execution can then
branch to application-specific handlers. The branch target address differs based on the application. Two such
examples are discussed below:

• An application can use the default exception handlers designed as a “trap” where the execution gets stuck.
Below is an example to a prefetch abort handler (an infinte loop):

Void __attribute__((interrupt("ABORT"), section(".text.hwi"))) HWiP_prefetch_abort_handler(void)
{
 volatile uint32_t loop = 1;
 while(loop)
 ;
}

• An implementation can have advanced exception handling capabilities in the OS, where the details of the
exception will be read and a corresponding error code are notified by the custom OS error handler. In such
cases, details of the error codes can be checked to understand the actual exception that was triggered. R13,
R14, and SPSR registers of the corresponding exception can be read for debugging the issue.

There are three important Arm Cortex-R5 registers that can also be used to confirm the current state of the
processor.

CPSR:

The CPSR can be used to verify the current mode of the processor. The mode bits of the CPSR register can be
used to check if the current mode is Abort:

M[4:0] Mode
10000 User

10001 FIQ

10010 IRQ

10011 Supervisor

10111 Abort
11011 Undefined

11111 System

SPSR:

Debugging Arm Cortex-R5 Exceptions www.ti.com

8 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

The SPSR can be used to check the previous mode just before entering the exception. For example, if the
processor moves from System to Abort Mode, SPSR shows the mode as “System” while CPSR shows the mode
as “Abort”. The bit definitions of SPSR register are the same as that of the CPSR register.

R14 Register (Link Register):

The R14 register is used to find the actual instruction or function call that caused the synchronous abort. The
actual address of the instruction that triggered the Exception is R14 - x, where “x” depends on the type of
exception.

Aborts are usually unintended exceptions resulting due to invalid or unsuccessful access of memory. Some of
the causes for aborts are as follows.

• Permission fault indicated by the Memory Protection Unit (MPU)
• Error detected in the data by the ECC checking logic

If the exception is confirmed to be a Data Abort, as the first step check the value of the Data Fault Status
Register (DFSR) of the Cortex-R CPU. The DFSR holds status information about the last data fault.

Figure 5-1 shows the DFSR register bit assignments.

Figure 5-1. DFSR bits

Use the “S” Bit [10] and “Status Bits” [0:3] to understand the nature of the Data Abort. For status description, see
Table 5-1.

Table 5-1. Status Description
Priority Sources FSR[10,3:0] FAR
Highest Alignment 0b00001 Valid

Background 0b00000 Valid

Permission 0b01101 Valid

Synchronous external abort 0b01000 Valid

Asynchronous external abort 0b10110 Unpredictable

Synchronous parity or ECC error 0b11001 Valid

Asynchronous parity or ECC error 0b11000 Unpredictable

Debug event 0b00010 Unpredictable

SD Bit:

The SD Bit distinguishes between an AXI Decode or Slave error on an external abort. This bit is valid only for
external aborts. For all other types of abort, this bit is set to zero.

• 0 = AXI Decode error (DECERR) or AHB error caused the abort, generated, typically by an interconnect
component, to indicate that there is no slave at the transaction address (The address you requested is not
valid)

• 1 = AXI Slave error (SLVERR) or unsupported exclusive access caused the abort. Used when the access has
reached the slave successfully, but the slave wishes to return an error condition to the originating master an
error condition to the originating master. (Valid address, but slave is unable to do the requested operation)

RW Bit:

The RW bit indicates whether a read or write access caused the abort.

• 0 = read access caused the abort

www.ti.com Debugging Arm Cortex-R5 Exceptions

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 9

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

• 1 = write access caused the abort

Debugging Arm Cortex-R5 Exceptions www.ti.com

10 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

5.2.1 Data Aborts

5.2.1.1 Alignment

This indicates that the memory access does not follow alignment requirements, which differ according to the
memory attribute of the region:

• “Normal” supports unaligned support (this is configurable)
• “Device” / “Strongly Ordered” supports only aligned access

This means that if a region is configured as “Strongly Ordered” and you try to do an Un-Aligned Memory
access, an Alignment Data Abort occurs. The Memory Map of the Cortex R5 has address range 0xEFFFFFFF to
0xFFFFFFFF configured as “Strongly Ordered” by default.

5.2.1.2 Background Aborts

Memory Protection Unit (MPU) settings must be correct for any region that the CPU is going to access. If the
address that the CPU issues falls outside any of the defined regions and the MPU is enabled, the MPU is
hard-wired to abort the access. That is, all accesses for an address that is not mapped to a region in the MPU
generate a background fault. A background fault does not occur if the background region is enabled and the
access is Privileged. An MPU background fault might indicate a stack overflow, and be rectified by allocating
more stack.

In the example below, in line 55, an address that falls outside any of the defined regions is trying to be written to.

Example:

void empty_main(void *args)
{
 Drivers_open();
 Board_driversOpen();
 ((volatile uint32_t) 0xFFFFFFFFF = 0x12;

 Board_driversClose();
 Drivers_close();
}

By checking the DATA_FAULT_STATUS register (DFSR), bits [10, 3:0], you can see that it fits to Background
Abort.

www.ti.com Debugging Arm Cortex-R5 Exceptions

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 11

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

5.2.1.3 Permission

This can happen when MPU settings prevent the access of a region. For example, if a User mode application
attempts to access a Privileged mode access only region a permission fault occurs.

Example:

__attribute__((section("mySection"))) Bool test;

void empty_main(void *args)
{
 Drivers_open();
 Board_driversOpen();
 test = 1;

 Board_driversClose();
 Drivers_close();
}

A read-only memory section was created by configuring the MPU access permission attributes. Then, a Boolean
variable test is placed in this read-only section (line 48). When trying to write to this variable (line 56), an MPU
permission fault was triggered.

5.2.1.4 Synchronous/Asynchronous External

This happens when the access has been transferred from the CPU to the AXI/AHB Bus and encountered an
error. This is the most common fault type that happens with Data Abort. If the Abort is Synchronous, you can
check the actual memory address that when accessed resulted in Data Abort using Data Fault Address Register
(DFAR), which holds the address of the fault when a synchronous abort occurred.

5.2.1.5 Synchronous/Asynchronous ECC

This happens if an ECC error is detected at TCM interfaces or in the cache.

5.2.2 Synchronous/Asynchronous Aborts

5.2.2.1 Changing an Asynchronous Abort to a Synchronous Abort

If store instructions to peripheral areas cause the exceptions, you can configure the corresponding peripheral
area as “Strongly-Ordered” via the Arm MPU (using SysConfig). A write to “Strongly-Ordered Memory” can
complete only when it reaches the peripheral or memory component accessed by the write. However, this may
impact the performance because a “Strongly Ordered” MPU attribute waits for the access to be completed
before processing the next data access.

Debugging Arm Cortex-R5 Exceptions www.ti.com

12 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

5.2.2.2 Synchronous Abort

Also known as a precise abort, is one for which the exception is ensured to be taken on the instruction that
generated the aborting memory access. The abort handler can use the value in the Link Register (R14) to
determine which instruction generated the abort, and the value in the Saved Program Status Register (SPSR)
to determine the state of the processor when the abort occurred. This happens when the access has been
transferred from the CPU to the AXI/AHB Bus and encountered an error. This is the most common fault type
that happens with Data Abort. If the Abort is Synchronous, you can check the actual memory address that when
accessed resulted in Data Abort using Data Fault Address Register (DFAR), which holds the address of the fault
when a synchronous abort occurred.

5.2.2.3 Asynchronous Abort

Also known as an imprecise abort, is one for which the exception is taken on a later instruction than the
instruction that generated the aborting memory access. Asynchronous faults are comparatively difficult to
analyze because you cannot trace the exact location that resulted in the abort unlike the DFAR register that
is used in Synchronous Faults. In general, “store” instructions (STB, STH, STR, STM/PUSH) to areas with
“Normal” or “Device” memory attributes causing an error are asynchronous.

5.2.2.4 Debugging Asynchronous Abort

From the DFSR Register, you can check status bits, SD bit, and RW bit.

As mentioned above, SD indicated whether it is an internal AXI decode error or external AXI slave error, and RW
indicates whether a read or write access caused an abort.

After the relevant information was extracted from the DFSR, the information can track the instruction that causes
the abort:

• R14 – 8 is a location near the instruction that caused the exception
• Find a “store” instruction near R14 – 8, which can likely cause the exception

5.2.3 Prefetch Abort

Prefetch Abort (PABT) Exception occurs when an instruction fetch causes an error. When a Prefetch Abort
occurs, the processor marks the prefetched instruction as invalid, but does not take the exception until the
instruction is to be executed. If the instruction is not executed, for example because a branch occurs while it is in
the pipeline, an abort does not occur. All prefetch aborts are synchronous. The difference between Undefined
Instruction Abort and Prefetch Abort exception is that in case of prefetch, CPU is unable to fetch the instruction
from the address; in an Undefined Instruction Exception, the CPU does not know what the instruction does.

The reason for Prefetch Abort can be analyzed by reading the Instruction Fault Status Register (IFSR), the
Instruction Fault Address Register (IFAR), and the Auxiliary Instruction Fault Status Register (AIFSR).

IFAR contains the address where the CPU was trying to fetch an instruction from. The contents of IFAR is
always valid for a Prefetch Abort, because all Prefetch Aborts are synchronous. AIFSR records additional
information about the nature and location of the fault, for example ATCM or BTCM.

www.ti.com Debugging Arm Cortex-R5 Exceptions

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 13

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

5.2.3.1 Possible Reasons for Prefetch Abort

• Improper MPU setting: If a permission fault has occurred based on the IFSR status, it is possible that one of
the following conditions has occurred:
– An instruction is being fetched from a location for which “Execute Never” attribute is set.
– The target address read from IFAR has “Device” or “Strongly-Ordered” memory attribute. This implicitly

means that these areas do not have executable code.
• ECC Error on the instruction read: ECC error is detected on the instruction reads. The IFAR register provides

the address that caused the error to be detected. The auxiliary IFSR indicates source of the ECC error.
• Wrong return address or branch address - Return address being corrupted - Branch address is corrupted

5.2.3.2 Handling Prefetch Abort Exception

• Confirm whether the CPU control is stuck in Prefetch Abort Exception by checking the halt address. If the
Offset is 0x0C, it indicates that the control has ended in a Prefetch Abort Handler.

• Check the status from IFSR and IFAR to determine the type of fault and the address leading to the abort.
• In the case of a “permission” fault, find the region in which the address read from the IFAR register falls

under. The region can be checked for MPU violations for code area. (Execute Never setting, Strongly-ordered
memory...).

5.2.4 Undefined Instruction

Undefined instruction exception can occur if the CPU does not understand the fetched instruction. There are
no Fault Status and Fault address registers associated with this exception; only Link register (R14) provides
relevant information. The instruction that caused the UNDEF abort is at R14– 4.

5.2.4.1 Possible Reasons for Undefined Instruction Exception

• Branch to RAM code that has been corrupted or not yet initialized with required functions
• Return address on the stack has been corrupted (for example, stack overflow or pop/push count mismatch)
• Function pointer is not initialized or corrupted

5.2.4.2 Handling Undefined Instruction Exception

• Confirm whether the CPU control is stuck in an Undefined Instruction exception by checking the halt address.
If the address is 0x04, then the control has ended in an Undefined Instruction Exception.

• Check the value of the R14 register. R14 – 4 provides the address of the instruction that caused the
undefined instruction exception. “X” depends on the mode (X=4 for ARM mode, and X=2 for Thumb mode).

• Check the instruction at the address read from R14 - X.
– If it is a valid instruction, check whether the mode used (ARM or THUMB) for execution is correct (A mode

mismatch for a valid instruction can cause undefined instruction exception).
– If the instruction is invalid, check for address corruption or RAM corruption.

5.3 Fetching Core Registers Inside an Abort Handler
It is very useful to fetch core registers whenever an abort handler occurs. By analyzing the core registers, you
can better understand what caused the abort handler. Below is an example of fetching the relevant registers
whenever a data abort occurs. For this example, the "empty" project was used from the SDK.

By looking at the vector table that is located at HwiP_armv7r_vectors_nortos_asm.s file, you can see
that all data aborts go to HwiP_data_abort_handler. This handler is a C function that is defined in
HwiP_armv7r_handlers_nortos.c file.

In our SDK, abort handlers are written in C code. For every C function, the compiler creates prologue and
epilogue sequences that manipulate some of the core registers (Stack Pointer register). Thus, if you fetch the
Stack Pointer inside the C function, a wrong value will be stored. To avoid that, you must use the "naked"
attribute and write a naked function in assembly. This attribute tells the compiler that the function is an
embedded assembly function, and then prologue and epilogue sequences is not generated for that function by
the compiler, and the Stack Pointer will point to the right value.

Debugging Arm Cortex-R5 Exceptions www.ti.com

14 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Inside HwiP_armv7r_handlers_nortos.c, a few modifications are done:

1. Change HwiP_data_abort_handler to be a naked function.
2. Create a new C handler (HwiP_data_abort_handler_c) that will be called from the naked function.

volatile uint32_t lrVal, pcVal, spVal;

__attribute__((naked)) void HwiP_data_abort_handler(void)
{
 //When data abort occurs, the processor first halts here

 /* Store Core Registers */
 __asm volatile ("mov %0, lr" : "=r" (lrVal));
 __asm volatile ("mov %0, pc" : "=r" (pcVal));
 __asm volatile ("mov %0, sp" : "=r" (spVal));

 /* Call the C version of the abort handler */
 __asm ("B HwiP_data_abort_handler_c");
}

void __attribute__((interrupt("ABORT"), section(".text.hwi"))) HwiP_data_abort_handler_c(uint32_t
*pMSP)
{
 printf("\nLR(r14): %x, PC:%x, SP:%x\n" lrVal, pcVal, spVal);

 volatile uint32_t loop = 1;
 while(loop)
 ;
}

Inside the naked function, assembly instructions were used to store the core registers. Then, the C version that
was created of the abort handler was called. Inside the C version, the core registers can be printf or do other
handling depends on the use-case.

In order to test our code, a data fault inside empty_main() was generated by forcing the processor to write to an
undefined memory region (writing 0x12 to pMem variable):

void empty_main(void *args)
{
 volatile uint32_t lrVal, pcVal, spVal;
 /* Open drivers to open the UART driver for console */
 Drivers_open();
 Board_driversOpen();

 volatile uint32_t* pMem;
 pMem = 0xFFFFFFFFF;
 *pMem = 0x12;

 while(1);

 Board_driversClose();
 Drivers_close();
}

Once this code was compiled and executed, a data fault is generated and makes the processor to first go
through our naked function, store the core registers, call the C function and print the registers to the console.

6 Debugging Arm Cortex-M4 Exceptions
Arm Cortex M series have two types of exceptions:

• System Exceptions - Internally to the processor and generated by the processor itself. There are in total 15
system exceptions that are defined by Arm and supported by the Cortex-M processors.

• Interrupts - External to the core itself. Those interrupts are usually vendor specific and they are routed to
the Nested Vectored Interrupt Controller (NVIC), that is responsible for their configuration. The M4F core of
the Sitara 24X devices supports up to 64 interrupts. Using NVIC registers you can Enable / Disable / Pend
various interrupts and read the status of the active and pending interrupts.

www.ti.com Debugging Arm Cortex-M4 Exceptions

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 15

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

6.1 Exception Entry and Exit Sequence

6.1.1 Entry Sequence

Whenever there is an interrupt:

• Pending bit set - the according pending bit of the interrupt will be set on the register of the NVIC
• Stacking and Vector Fetch (Push xPSR, PC, LR, R12, R3, R2, R1, R0)
• The processor makes an entry into the handler (Active bit is set inside NVIC register)
• Clearing the pending bit of the NVIC register
• The processor mode is changed from Thread to Handler mode
• Handler code is executed
• The MSP ia used for any stack operations inside Handler mode

6.1.2 Exception Exit Sequence

The exception return mechanism is triggered using a special return address (EXC_RETURN). This address is
generated during exception entry and it is stored in the Link Reigster (LR). In example, when the processor is
in thread mode and the processor uses the Processor Stack Pointer (PSP) as its stack pointer, whenever an
exception occurs, the processor does the stacking operations mentioned using PSP, and LR register is loaded
with the EXC_RETURN. The way exception return happens, is by writing the value LR into the program counter
(PC). By writing the LR value into the PC, exception return can be triggered. When that happens, the processor
actually does an unstacking operation and comes to a normal execution. The EXC_RETURN is not an actual
address, it includes different fields that are decoded by the processor (Stack frame type, return to thread mode
or handler mode, return with MSP or PSP and so on...) so that the processor knows to which mode it should
return.

6.1.3 Decoding EXC_RETURN Value

Table 6-1. Decoding EXC_RETURN Value
Bits Descriptions Values

31:28 EXC_RETURN indicator 0xF

27:5 Reserved 0xEFFFFF

4 Stack Frame Type When FPU is not available, this bit is always 1

3 Return Mode 1 = Return to Thread Mode
0 = Return to Handler Mode

2 Return Stack 1 = Return with PSP
0 = Return with MSP

1 Reserved 0

0 Reserved 1

Debugging Arm Cortex-M4 Exceptions www.ti.com

16 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Figure 6-1 shows the flow of the exit sequence.

Figure 6-1. Exit Sequence Flow

6.2 Faults Handling
Faults are system exceptions. They happen because of programmers handling processor by violating the design
rules. Whenever a fault happens, the internal processor register is updated to record the type of fault, the
address of the instructions that caused the fault, and if the associated fault is enabled, the exception handler is
called by the processor. In example, if your code tries to divide by zero, then divide by zero fault is raised from
the hardware that invokes the usage fault exception handler, if enabled. If not enabled, then the code ends up in
a general hard fault handler.

6.2.1 There are 15 System Exceptions by Arm Cortex M Processors

Table 6-2. Arm Cortex-M Exceptions

Exception Number IRQ Number Exceptione Type Priority
Vector Address or
Offset Activation

1 - Reset -3, Highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 HardFault -1 0x0000000
C

-

4 -12 MemManage Configurable 0x00000010 Synchronous

5 -11 BusFault Configurable 0x00000014 Synchronous when
precise,
Asynchronous when
imprecise

6 -10 UsageFault Configurable 0x00000018 Synchronous

7-10 - Reserved - - -

www.ti.com Debugging Arm Cortex-M4 Exceptions

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 17

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Table 6-2. Arm Cortex-M Exceptions (continued)

Exception Number IRQ Number Exceptione Type Priority
Vector Address or
Offset Activation

11 -5 SVCall Configurable 0x0000002C Synchronous

12-13 - Rserved - - -

14 -2 PendSV Configurable 0x00000038 Asynchronous

15 -1 SysTick Configurable 0x0000003C Asynchronous

16 0 Interrupt (IRQ) Configurable 0x00000040 Asynchronous

Out of these system excpetions, HardFault, MemManage, BusFault and UsageFault are the only faults. There
are exceptions that are responsible for reporting a fault. Hard fault exception is always enabled by the processor
and its priority is hard coded and not configurable. You can disable it by the FAULTMASK register. Other faults
need to be enabled by the user.

6.2.1.1 Causes of Faults

• Undefined Instruction
• Divide by zero
• Attemp to execute code from memory region which is marked as XN (Executed Never) to prevent code

injection. In example, peripheral region is always marked as XN area, if the processor will try to execute code
from this region it will cause a fault.

• MPU (Memory Protect Unit) - region access violation by the code, in example writing to a "read only" area
• Unaligned data access
• Returning to thread mode keeping active interrupt alive - when the interrupt is in active state you must finish

it, you can't go back to thread mode if not finishing handling an interrupt in the handler mode.
• Debug monitor setting and related exceptions
• Bus Error, in example no respone from memory device like SDRAM and so on...
• Executing SVC instruction inside SVC handler

6.2.2 HardFault Exception

A HardFault exception occurs because of an error during exception processing, or whenever any other exception
can not be managed by other exception handler. This exception has a fixed priority (-1) after reset and NMI. This
means it has higher priority than any exception with configurable priority.

6.2.2.1 Causes of HardFault Exception

• Escalation of configurable fault exceptions, in example, if a program tries to divide by zero, and the divide by
zero trap is disabled - then the processor enda up in the hard-fault handler instead of Usage fault handler.

• Bus error returned during a vector fetch
• Execution of a break point instruction in the software when both halt mode and debug mode are disabled
• Executing SVC instruction inside the SVC handler causea the processor to end in the HardFault handler.

6.2.3 Configurable Fault Exceptions

The priority of the following system faults are configurable in contrast to the hard fault exception.

6.2.3.1 Mem Manage Fault Exception

This is a configurable fault exception that is disabled by default (can be enabled by the SHCSR register). This
fault detects memory access violations to regions that are defined in the Memory Management Unit (MPU).
For example, code execution from a memory region with read/write access only. Another example is when
unprivileged thread mode code (such as user application or RTOS task) tries to access memory region that is
marked as "privileged access only" by the MPU. Also, this fault can occur due to XN (eXecute Never) issues -
whenever the processor tries to execute an instruction from a XN area.

Debugging Arm Cortex-M4 Exceptions www.ti.com

18 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Table 6-3 shows the behavior of accesses to each region in the memory map.

Table 6-3. Mem Manage Fault Exception
Address Range Memory Region Memory Type XN Description
0x00000000 -
0x1FFFFFFF

Code Normal - Executable region for program code. You can also
put data here.

0x20000000 -
0x3FFFFFFF

SRAM Normal - Executable region for data. You can also put code
here. This region includes bit band area.

0x40000000 -
0x5FFFFFFF

Peripheral Device XN This region include bit band area

0x60000000 -
0x9FFFFFFF

External RAM Normal - Executable region for data

0xA0000000 -
0xDFFFFFFF

External Device Device XN External Device Memory

0xE0000000 -
0xE00FFFFF

PPB - Private
Peripheral Bus

Strongly-Ordered XN This region include the NVIC, System Timer and
System Control Block

0xE0100000 -
0xFFFFFFFF

Device Device XN Implementation-specific

Note
The Code, SRAM, and external RAM regions can hold programs. However, Arm recommends that
programs always use the Code region. This is because the processor has separate buses that enable
instruction fetches and data accesses to occur simultaneously.

6.2.3.2 BusFault Exception

Detects memory access errors on instruction fetch, data read/write, interrupt vector fetch, and register stacking
(save/restore) on interrupt (entry/exit). This fault can also occur due to unprivileged access to the Private
Peripheral Bus (PPB).

6.2.3.3 Usage Fault Exception

Can be caused by:

• Execution of undefined instruction. Cortex M series support only thumb ISA, so executing any instruction
outside this ISA (like Arm ISA) would result in a fault.

• Executing an FPU instruction when the FPU is disabled
• Trying to return to Thread mode when an interrupt is still handled in the background
• Dividing by zero
• Clearing the 'T' bit to 0 instead of keeping it '1' (The T bit of the processor decides Arm state or THUMB state.

For Cortex M series, it should be maintained at '1' since the since the processor does not support the Arm
ISA)

6.2.4 Control Registers

The System control block (SCB) provides system implementation information, and system control. This includes
configuration, control, and reporting of the system exceptions. Some of its registers are used to control fault
exceptions:

• CCR - Configuration and Control Register, controls the behavior of the UsageFault for divideby-zero and
unaligned memory accesses

• SHP - System Handler Priority Registers, control the exception priority
• SHCRS - System Handler Control and State Register, enables the system handlers, and indicates the

pending status of the BusFault, MemManage fault, and SVC exceptions

www.ti.com Debugging Arm Cortex-M4 Exceptions

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 19

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Register Address Description
CCR 0xE000ED14 Configuration and Control Register: contains enable bits for trapping of

divide-by-zero and unaligned accesses with the UsageFault.

SHP 0xE000ED18 System Handler Priority registers: control the priority of exception
handlers.

SHCRS 0xE000ED24 The SHCSR enables the system handlers, and indicates:
• The pending status of the BusFault, MemManage fault, and SVC

exceptions
• The active status of the system handlers

Figure 6-2. CCR - Configuration and Control Register

The following bits of the CCR register control the behavior of the Usage Fault:

DIV_0_TRP: Enables UsageFault when the processor executes an SDIV or UDIV instruction with a divisor of 0:

• When '0' = do not trap divide by 0; a divide by 0 returns a quotient of 0.
• When '1' = trap divide by 0.

UNALIGN_TRP: Enable UsageFault when a memory access to unaligned addresses are performed:

• When '0' = do not trap unaligned halfword and word accesses
• When '1' = trap unaligned halfword and word accesses; an unaligned access generates a UsageFault

6.2.4.1 SHP - System Handler Priority Register

The SHP registers set the priority level of exception handlers that their priorities are configurable:

• SHP[0]: Priority of the Memory Management Fault
• SHP[1]: Priority of the Bus Fault
• SHP[2]: Priority of the Usage Fault

Debugging Arm Cortex-M4 Exceptions www.ti.com

20 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Figure 6-3. SHCSR - System Handler Control and State Register

The following bits of the SHCSR register belong to fault exceptions:

Active Bits:

• MEMFAULTACT: Memory Management Fault exception active bit, reads as 1 if exception is active.
• BUSFAULTACT: BusFault exception active bit, reads as 1 if exception is active.
• USGFAULTACT: UsageFault exception active bit, reads as 1 if exception is active.

Pending Bits:

• USGFAULTPENDED: UsageFault exception pending bit, reads as 1 if exception is pending.
• MEMFAULTPENDED: Memory Management Fault exception pending bit, reads as 1 if exception is pending.
• BUSFAULTPENDED: BusFault exception pending bit, reads as 1 if exception is pending.

Enable Bits: (If not enabling, the exceptions below will be escelated directly to the hard fault handler)

• MEMFAULTENA: Memory Management Fault exception enable bit, set to 1 to enable; set to 0 to disable.
• BUSFAULTENA: BusFault exception enable bit, set to 1 to enable; set to 0 to disable.
• USGFAULTENA: UsageFault exception enable bit, set to 1 to enable; set to 0 to disable.

6.2.5 Status Registers

Status Register Handler Address Description
HFSR HardFault 0xE000ED2C HardFault Status Register

MMFSR MemManage 0xE000ED28 MemManage Fault Status Register

BFSR BusFault 0xE000ED29 BusFault Status Register

UFSR UsageFault 0xE000ED2A UsageFault Status Register

AFSR 0xE000ED3C Auxiliary Fault Status Register. Implementation
defined content

For information regarding the Status Registers bit fields, see the Arm Cortex M4 Technical Reference Manual.

www.ti.com Debugging Arm Cortex-M4 Exceptions

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 21

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

6.2.5.1 Undefined Instruction Handling Example

In order to detect what caused an exception, you can use the registers above inside the exception handlers
themselves. Here is an example of simulating a usage fault exception inside the empty example of the MCU+
SDK and handling it with the registers above:

1. Enable all configurable exceptions via the SHCSR.
2. Create a random address in DRAM (0x00030000), with the value of 0xFFFFFFFF.
3. Create a pointer to a function that points to the address you created.
4. Execute the function by dereferencing the pointer you created.

void empty_main(void *args)
{
 /* Open drivers to open the UART driver for console */
 Drivers_open();
 Board_driversOpen();

 //Enable all configurable exceptions:

 uint32_t *pSHCSR = (uint32_t*)0xE000ED24;
 *pSHCSR |= (1<< 16); //Memory Manage Fault
 *pSHCSR |= (1<< 17); //Bus Fault
 *pSHCSR |= (1<< 18); //Usage Fault

 //Force the processor to execute an undefined instruction from DRAM
 uint32_t* pADDR = (uint32_t*)0x00030001;
 *pADDR = 0xFFFFFFFF;
 void (*temp_address) (void);
 temp_address = pADDR;
 temp_address();

 while(1);

 Board_driversClose();
 Drivers_close();
}

Running this code causes the processor to execute an undefined instruction and end in the UsageFault handler.

Inside the UsageFault handler (HwiP_armv7m_handlers_nortos.c), you can use the Usage Fault Status
Register (UFSR) by reading and printing its value & 0XFFFF.

void HWI_SECTION HwiP_usageFault_handler()
{
 uint32_t *pUFSR = (uint32_t*)0xE000ED2A;

 volatile uint32_t loop = 1;
 printf("UsageFault Exception\n");
 printf("UFSR = %x\n", (*pUFSR) & 0xFFFF);
 while(loop)
 ;
}

Debugging Arm Cortex-M4 Exceptions www.ti.com

22 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Since an undefined instruction is executed, you can expect this register to be equal to '1':

6.2.5.2 Invalid State Handling Example

You can also simulate a different UsageFault exception of invalid state (UFSR = 0x2). This fault means that
the processor has attempted to execute an instruction that makes illegal use of the Execution Program Status
Register (EPSR).

When the INVSTATE bit of the UFSR is set, the PC value stacked for the exception return points to the
instruction that attempted the illegal use of the EPSR. Potential reasons:

• Loading a branch target address to PC with LSB=0
• Stacked PSR corrupted during exception or interrupt handling
• Vector table contains a vector address with LSB=0

The LSB of the address is loaded to the 'T' bit of the EPSR. If this bit is set, it means that the processor is
in Thumb mode, if this bit is cleared, it means that the processor is in Arm mode. Since Arm Cortex M Series
support only Thumb ISA, then this bit must be set during execution. This is something that is done by the
compiler, but if you assign an address manually to the PC, then you need to take care of this bit by ourselves.

www.ti.com Debugging Arm Cortex-M4 Exceptions

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 23

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

The code below causes the processor to halt in the UsageFault handler, but this time with UFSR = 0x2 (Invalid
State):

void empty_main(void *args)
{
 /* Open drivers to open the UART driver for console */
 Drivers_open();
 Board_driversOpen();

 //Enable all configurable exceptions:

 uint32_t *pSHCSR = (uint32_t*)0xE000ED24;
 *pSHCSR |= (1<< 16); //Memory Manage Fault
 *pSHCSR |= (1<< 17); //Bus Fault
 *pSHCSR |= (1<< 18); //Usage Fault

 //Address LSB = 0
 uint32_t* pADDR = (uint32_t*)0x00030000;
 *pADDR = 0xFFFFFFFF;
 void (*temp_address) (void);
 temp_address = pADDR;
 temp_address();

 while(1);

 Board_driversClose();
 Drivers_close();
}

Debugging Arm Cortex-M4 Exceptions www.ti.com

24 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

6.2.6 Printing the Stack Frame

As mentioned in the previous sections, when the processor handles an exception, during the entry sequence, it
stacks R0 – R3, R12, LR, PC, and xPSR.

When debugging outside of CCS, printing the stack frame to the console might be very useful in order to explore
why you end up in an exception. In example, knowing the value of the Link Register (R14) is important to
understand where in memory the exception occurred. To print the Stack Frame, you have to know the value of
the Main Stack Pointer (MSP) right when the exception happened, so you will be able to print the whole block
that contains R0 – R3, R12, LR, PC, and xPSR.

When an exception occurs:

1. Go to an Handler code
2. Save the MSP
3. Print R0 - R3, R12, LR, PC and xPSR (MSP[0] to MSP[7])

In our SDK, exceptions handlers are written in C code. For every C function, the compiler creates a prologue and
epilogue sequences that manipulates the MSP register. Thus, if you save the MSP inside the C function, a wrong
MSP value is stored. To avoid that, you must use the "naked" attribute and write a naked function in assembly.
This attribute tells the compiler that the function is an embedded assembly function, and then prologue and
epilogue sequences is not generated for that function by the compiler, and the MSP points to the right value.

Following the above, the sequence of handling a fault is as follows:

1. Once an exception occurs, execute the naked handler function (assembly):
a. Save MSP in R0
b. Call the C version of the handler code

2. Inside the C function:
a. Print R0 - R3, R12, LR, PC and xPSR (MSP[0] to MSP[7])
b. while(1)

Here is a code example for the modified usageFault_handler() function of the SDK:

__attribute__((naked)) void HwiP_usageFault_handler(void)
{
 __asm ("MRS r0,MSP");
 __asm ("B HwiP_usageFault_handler_c");
}

void HWI_SECTION HwiP_usageFault_handler_c(uint32_t *pMSP)
{
 uint32_t *pUFSR = (uint32_t*)0xE000ED2A;
 volatile uint32_t loop = 1;
 printf("\nUsageFault Exception\n");
 printf("UFSR = %x\n", (*pUFSR) & 0xFFFF);
 printf("Stack Frame: = %p\n", pMSP);
 printf("R0 = %lx\n", pMSP[0]);
 printf("R1 = %lx\n", pMSP[1]);
 printf("R2 = %lx\n", pMSP[2]);
 printf("R3 = %lx\n", pMSP[3]);
 printf("R12 = %lx\n", pMSP[4]);
 printf("LR = %lx\n", pMSP[5]);
 printf("PC = %lx\n", pMSP[6]);
 printf("xPSR = %lx\n", pMSP[7]);

 while(loop)
 ;
}

www.ti.com Debugging Arm Cortex-M4 Exceptions

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 25

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Example

In order to simulate an usageFault, you can use the previous example where you were trying to execute an
undefined instruction from DRAM:

void empty_main(void *args)
{
 /* Open drivers to open the UART driver for console */
 Drivers_open();
 Board_driversOpen();

 //Enable all configurable exceptions:

 uint32_t *pSHCSR = (uint32_t*)0xE000ED24;
 *pSHCSR |= (1<< 16); //Memory Manage Fault
 *pSHCSR |= (1<< 17); //Bus Fault
 *pSHCSR |= (1<< 18); //Usage Fault

 uint32_t* pADDR = (uint32_t*)0x00030001;
 *pADDR = 0xFFFFFFFF;
 void (*temp_address) (void);
 temp_address = pADDR;
 temp_address();

 while(1);

 Board_driversClose();
 Drivers_close();
}

Once you execute the code above, you will go through the naked usageFault_handler (assembly version) and
then jump to the C version and print the whole stack frame:

Debugging Arm Cortex-M4 Exceptions www.ti.com

26 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

In the image above, you can see that LR = 0x30000, by searching this address in the Disassembly window. You
can see the undefined instruction (0xFFFFFFFF) that you were trying to execute:

7 Debugging Memory
7.1 Viewing Device Memory
To open the Memory Browser view: View → Memory Browser

The Memory Browser view is another integral part of the debugger that shows the contents of the target memory
starting at a specified address and with various data formatting features.

To use it, enter an address in the Address Text box at the top of the view. The contents of a selected memory
location can be edited by double-clicking the value.

It features multiple viewing formats and types:

Chars, integers (signed/unsigned), floats, multiple hexadecimal data sizes (8 through 64-bits).

Additional capabilities include:

• Memory fill with predefined values
• Saving to and loading from files on the host PC
• Viewing of all variables and functions
• A context-sensitive information box for every memory position

7.2 Linker Command File (linker.cmd)
The linker, not the compiler, defines the memory map and allocates code and data into target memory. The linker
command (linker.cmd) is the code generation development tool responsible for linking together all the object files
and libraries into the final executable form. The linker offers many features, including some recent additions,
which make it easy to use system memory efficiently. Inside the linker there are two important directives:

• The MEMORY directive
• The SECTIONS directive

Those directives appear in every linker command file.

7.2.1 The Memory Directive

The purpose of the MEMORY directive is to assign names to ranges of memory. These memory range names
are used in the SECTIONS directive. Here is part of the MEMORY directive from a typical Am243x system:

www.ti.com Debugging Memory

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 27

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

The line that begins with MSRAM defines a memory range named MSRAM. It starts at address 0x7008000 and
has a length of 0x4000.

7.2.2 The Sections Directive

The SECTIONS directive contains most of the interesting code. The key thing to understand is that the
SECTIONS directives does two things at once:

• It forms output sections from input sections
• It allocates those output sections to memory

Describing the SECTIONS directive requires an understanding of these terms:

• Object file - For the purposes of this document, an object file is a collection of input sections. An object file
can be presented directly to the linker (via the command line or in a command file), or it can come from a
library.

• Input Section - One section from one object file. An input section can be initialized or uninitialized. It can
contain code or data.

• Output Section - A collection of one or more input sections
• Memory Range - A range of system memory specified in the MEMORY directive

Debugging Memory www.ti.com

28 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

In theory, you cannot know anything about the contents of an input section based on the name alone.
Nonetheless, input sections with these names usually have these contents:

Name Initialized Notes
.text Yes Executable code

.bss No Global variables

.cinit Yes Tables which initialize global variables

.data (EABI) Yes and No Initialized coming out of the assembler; changed to uninitialized by the
linker

.data (COFF ABI) Yes Initialized data

.stack No System stack

.sysmem or .heap No Malloc heap (malloc(), calloc(), realloc()..)

.const Yes Initialized global variables

.switch Yes Jump tables for certain switch statements

.init_array or .pinit Yes Table of C++ constructors called at startup

.cio No Buffer for stdio functions

.rodata Yes Contains read-only data, typically string constants and static-scoped
objects.

Here is a part of the sections direcative of the Am243x:

Grouping and aligning is done quite often inside linker.cmd file. The assembler generally has a .align directive
embedded in code, but doing palign(8) in linker ensures proper alignment. palign(8) is not necessary for
code sections, code is typically aligned to 4 byte boundary so that Arm instructions are aligned correctly. It is
necessary for sections like the heap and stacks. Other data sections are 8-byte aligned to ensure max data size
of long long (64 bits) are aligned. Note that palign only ensures section start and size are 8 byte aligned, it
doesn't ensure individual members in sections are aligned.

Grouping is done for various reasons, sections like BSS need grouping so that a symbol for start and end get
defined, which is used in C runtime init phase before main to memset BSS section to 0.

Some sections are grouped to enable overlay with other specific sections. For example, ICSS firmware is
needed only at initialization and is overlaid with ICSS_MEM section as ICSS_MEM section is used only after
firmware is loaded, after which the firmware is no longer required and can be overwritten.

Grouping is generally done as it is easy to check in map file the size of section if is grouped.

In order to understand more of the syntax inside linker.cmd, see the TI Linker Command File Primer

www.ti.com Debugging Memory

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 29

Copyright © 2022 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/sdto_cgt_Linker-Command-File-Primer.html
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

7.3 Stack Overflow
There are few methods to debug the stack. One of them is using the stack peak of the ROV (described in
detailed in the ROV section). Another method that can be useful is to set a watchpoint to the end of stack, as
described in the Watchpoints section. In addition, the compiler provides stack protection functionality in the form
of the following options. To be able to use them, enable those "flags" in Project → Properties → Build → Arm
Compiler → Edit flags.

7.3.1 -fstack-protector

By adding the flag -fstack-protector, you instruct the compiler to emit extra code to check for buffer overflows,
such as stack-smashing attacks. This is done by adding a guard variable to functions with vulnerable objects.
This includes functions that call alloca, and functions with buffers larger than or equal to 8 bytes. The guards are
initialized when a function is entered and then checked when the function exits. If a guard check fails, an error
handling function is called. The error handling function can be made to indicate the error in some way and exit
the program. Only variables that are actually allocated on the stack are considered, optimized away variables or
variables allocated in registers are not considered.

7.3.2 -fstack-protector-strong

By adding the flag -fstack-protector-strong , you instruct the compiler to behave as if -fstack-protector were
specified, except that a stronger heuristic is used to determine the functions for which the compiler will emit stack
buffer overflow checking code.

7.3.3 -fstack-protector-all

By adding the flag -fstack-protector-all, you instruct the compiler to behave as if -fstack-protector were specified,
except that the compiler emits stack buffer overflow checking code for all functions instead of limiting protection
as -fstack-protector does.

Debugging Memory www.ti.com

30 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

7.3.4 Enabling Stack Smashing Detection

To enable stack smashing detection in your application, you need to provide definitions of:

__stack_chk_fail() - This function is called from an instrumented function when a check against the stack guard
value, __stack_chk_guard, fails. A simple definition of this function might look like this:

void __stack_chk_fail(void) {
printf("__stack_chk_guard has been corrupted\n");
exit(0);
}

__stack_chk_guard - This is a globally visible symbol whose value can be copied into a location at the
boundary of a function’s allocated stack on entry into the function, and loaded just prior to function exit to
perform a check that the local copy of the __stack_chk_guard value has not been overwritten. A simple definition
of this symbol might look like this:

unsignedlong__stack_chk_guard=0xbadeebad;

You can then compile a file containing both of these definitions to preoduce an object file that can be linked into
an application that is instrumented for stack smashing detection.

7.3.5 Enabling Stack Smashing Detection

Here is a simple example to summarize and demonstrate how the stack smashing detection capability can be
used. The first source file presents the definitions of __stack_chk_fail() and __stack_chk_guard (stack_check.c):

#include <stdlib.h>
#include <stdio.h>
void __stack_chk_fail(void);
unsigned long __stack_chk_guard = 0xbadeebad;
void __stack_chk_fail(void)
{
printf("ERROR: __stack_chk_guard has been corrupted\n");
exit(0);
}

The second source file presents a use case where a function, foo, writes past the end of a local buffer
(stack_smash.c):

#include <string.h>
void foo(void);
int main() {
foo();
return 0;}void foo(void)
{
char buffer[3];
strcpy(buffer, "Oi! I am smashing your stack");
}

7.4 Variables and Expressions View in CCS
To open the Variables view: View → Variables

The Variables view shows only Local variables that belong to the function currently being executed.

To see an example of this, import gpio_interrupt example and set a breakpoint inside gpio_interrupt.c in
gpio_input_interrupt_main() and in the ISR GPIO_bankIsrFxn().

Run the program and let it halt at the first breakpoint in gpio_input_interrupt_main(). Take a look a the
variables listed in the Variables view - notice it shows the variables local to this function. You can modify the
value of a variable directly from the Variables view. Variables whose values have changed since the last time
they were seen are highlighted in yellow.

To open the Expressions view: View → Expressions

The Expressions view allows you to watch local, global, and static variables, C-valid expressions, and
registers.

www.ti.com Debugging Memory

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 31

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Expressions whose values have changed since the last time they were seen are highlighted in yellow. You can
modify the value of an expression directly from the Expressions view.

7.5 Understanding Your Application's Memory Allocation
The Memory Allocation View in Code Composer Studio provides a graphical representation of how much
memory is consumed by your application.

To open the view, go to the CCS menu View -> Memory Allocation.

By default, the view shows the memory used relative to the total available memory for the project that is
active in the Project Explorer view. You can expand each memory region to see how much memory each
individual section or sub-section is using. Another method to debug memory allocation to understand where
the memory sections you configured in linker.cmd are actually allocated, is to look at the Debug.map file under
Debugà”project_name ”.Debug.map.

For example, in the Am243x linker.cmd file, there is a default section called “vectors”:

SECTIONS
{
.vectors:{} palign(8) > R5F_VECS
...
...
...
}

To understand where exactly this section is allocated and what it contains, check the Debug.map file.

There, this is a specific case, the vectors are located in address 0x00, and contains an object called
“HwiP_armv7r_vectors_nortos_asm.obj” from a library named “nortos.am243x.r5f.ti-arm-clang.debug.lib”.

Debugging Memory www.ti.com

32 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

7.6 FreeRTOS ROV
The Runtime Object View (ROV) provides tools that enable developers to quickly visualize the state of
embedded applications. ROV reads memory from the target and intelligently displays data.

• ROV does not disturb the run-time behavior of the application on the target (when using a JTAG connection).
ROV can read current memory from a running target. ROV also automatically refreshes all of its views
whenever the target is stopped–for example when single stepping, when the target hits a breakpoint, or when
you halt the target asynchronously.

• ROV adds zero footprint to the target code (when using a JTAG connection).
• ROV provides visual tools that show changes in the target state, memory use, and data structures on the

host computer. The tool shows high-level information needed by embedded application developers.
• ROV is provided automatically with the TI-RTOS Kernel component of the Sitara SDK. If you use Code

Composer Studio (CCS) you have an access to ROV. Nothing needs to be enabled in the application code.

ROV can be extended to work with any embedded library. The examples on this page use the TI-RTOS Kernel,
which includes ROV support for its entities including threads, heap memory, and CPU load.

1. To launch ROV views, click on the “ROV” button in the CCS toolbar as shown below:

2. Click on various “Viewable Modules”. “OS Kernel” is the one which has useful views:

3. After clicking on "OS Kernel", click on the drop down to see all the supported ROV views:

www.ti.com Debugging Memory

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 33

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

4. Shown below is a sample after "Task Instances" view is selected.

The ROV can be very helpful for debugging stack overflow issues. When an error such as a stack overflow
occurs, the corresponding field is highlighted in red. Hover your cursor over a red field to see a brief description
of the error.

8 Debugging Boot
Booting user-defined applications on a System-on-Chip (SoC) involves multiples steps as listed below:

1. There are multiple steps involved to convert a user application, created using a compiler+linker toolchain,
into a binary format that is suitable to be booted by the SoC.

2. You need to flash this binary to the EVM flash.
3. When the SoC is powered on, the previously flashed binary is executed.
4. After powering on the EVM, the bootflow takes place mainly in two steps:

a. ROM boot, in which the ROM bootloader boots a secondary bootloader or an SBL.
b. SBL boot in which the secondary bootloader boots the application.

8.1 ROM Boot
• As soon as the EVM is powered ON, the ROM bootloader or RBL starts running. The RBL is the primary

bootloader.
• Depending on which boot mode is selected on the EVM, the RBL loads the secondary bootloader or SBL

from a boot media (OSPI flash, SD card or via UART).
• Rest of the booting is done by the SBL
• The RBL expects the image it boots (SBL in our case) to always be signed

Debugging Boot www.ti.com

34 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

8.2 SBL Boot
• The SBL is essentially an example application of the bootloader library.
• It is considered to be a secondary bootloader because it is booted by the RBL, which is the primary

bootloader.
• An SBL typically does a bunch of specific initializations and proceeds to the application loading.

– For example, in the case of AM243x, the SBL loads the SYSFW to the Cortex M3 and sends the board cfg
to the SYSFW once the M3 core is booted.

• Depending on the type of SBL loaded, SBL looks for the multicore appimage of the application binary at a
specified location in a boot media.

• If the appimage is found, the multicore appimage is parsed into multiple RPRCs. These are optimized
binaries that are then loaded into individual CPUs.

• Each RPRC image has information regarding the core on which it is to be loaded, entry points and multiple
sections of that application binary

• The SBL uses this information to initialize each core that has a valid RPRC. It then loads the RPRC
according to the sections specified, sets the entry points and releases the core from reset. Now the core will
start running.

8.3 GEL Files
Startup GEL files are used to automate device initialization when Code Composer Studio starts up. The General
Extension Language (GEL) can be used to configure the Code Composer Studio development environment and
to initialize the target CPU. GEL is an interpreted language, and its syntax is similar to that of C. A rich set of
built-in GEL functions is available, or you can create your own GEL functions. When develop and debugging
with CCS, the GEL files replace the functionality of the Secondary Bootloader. In the field, the booting sequence
happens as described above, and most times the code will be imported from Flash to RAM by the SBL. The
SBL is a C code which is part of the Sitara MCU SDK and it can be modified / implemented by the developer.
If important parts are missing from the SBL (such as un-itiliaziations of clocks and so on), unexpected problems
can occur. In those cases, where the booting process fails, it is difficult to understand where in the code you are
stuck. In order to debug such cases, it can be easier to connect to target without GEL files or loading any image.

1. Configure a new target by new->Target Configuration file, insert a file name and click on finish. Then look
for your device (Am243x Launchpad was used) and click on save.

2. You can click on Test Connection button to verify that all connection tests pass.

3. Click on Target Confication under Advanced Setup:

www.ti.com Debugging Boot

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 35

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

4. Delete the initialization script from each core and hit on Save.

5. Run the created target configuration file by right click on it and then select Launch Selected Configuration.
6. Connect to one of the cores by right click on it and select Connect Target (Ctrl+Alt+C).

Debugging Boot www.ti.com

36 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

7. If you halt the program, you would stop on a random address with "No symbols are defined". To be able to
see some code and understand exactly where you are, you should load symbols with CCS by clicking on
Run->Load->Load Symbols and choose the right project.

8.3.1 Debugging Init Code

8.3.1.1 Disable Auto-Run to Main

CCS by default automatically runs to main() upon loading a program. This option must be disabled in order to
debug the init code of your application as described in the CCS User Guide.

9 Debugging Real-Time Control Loops
9.1 Trace
Arm tracing describes an advanced debug feature set of Arm devices that are able to stream out compressed
core instruction information so a data stream of executed instructions can be reconstructed.

There are two types of trace:

• Processor Trace: Inspects the code execution and performs real-time gathering of instructions being
executed in a processor

• System Trace (STM): A set of built-in capabilities on the device that monitors synchronization and timing
between cores and on-chip peripherals. STM oversees system behavior.

www.ti.com Debugging Boot

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 37

Copyright © 2022 Texas Instruments Incorporated

https://software-dl.ti.com/ccs/esd/documents/users_guide/ccs_debug-main.html#auto-run-and-launch-options
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

CCS supports the Arm trace and this architecture is useful to detect complex, intermittent bugs and profile and
fine tune code performance. If you are stuck with an intermittent or complex problem in the code, Processor
Trace is usually your last line of defense to see the execution history. If you happen to have runtime problems
but cannot identify what is causing the missed real-time deadlines, both Processor and System Trace help
evidence it. If the system does not meet the expected or calculated power requirements, System Trace helps.

9.1.1 Processor / Core Trace

The Core Trace is responsible for the next following things:

• Capture all instructions that go through the CPU and copy them to a memory buffer:
– Trace program address execution
– Trace data writes to a specific location or range of locations

• Attach timestamps to each instruction
• Send data back to Code Composer Studio for post processing analysis:

– Code Coverage
– Profile

Expanding on the concept of Core Trace, the idea behind it is pretty straightforward: simply capture all the
assembly instructions that ever get executed by the CPU and send them to the host PC for analysis. These are
stored together with timestamps. Once this data is available, CCS can correlate the assembly instructions with
the source code and thus allow looking at the code execution more easily. In addition to that it can also perform
a multitude of other operations. The most relevant are: code coverage analysis, which means finding out which
routines were actually executed, and profiling, which means knowing how many times and for how long each
instruction and routine executed. However, one important detail defines its availability: since the execution speed
of modern processors can reach billions of instructions per second, it is impossible to gather all this information
without special hardware and some buffering between the device and the host PC. That is the reason why core
trace is not available in all devices, and for the ones who have this feature there are two implementations with
different levels of complexity:

ETB - Embedded Trace Buffer:

• Buffer size is limited (typically 2k to 8k)
• No modifications to the hardware are needed
• Any XDS emulator can be used
• Can run at core frequency

Pin Trace

• A technology that features a trace buffer outside of the device without losing the ability to capture all
instructions that are executed by the processing core.

• Buffer size is virtually unlimited (up to 2G)
• It features circular and one-shot modes
• Modifications to the hardware are needed
• Frequency depends on pin bandwidth

9.1.2 How to Use CCS to Capture Trace Data on an AM243x

When having a debug session started for launchpad, the target is connected to CCS and GPIO led blink
example for the R5 core is loaded and halted at main.

Under the tools → code analysis.

Select the first option (Core Trace) to capture core trace data, which is real-time gathering of instructions being
executed by the core.

Debugging Real-Time Control Loops www.ti.com

38 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

In the core trace tab, there are several options available. Filters are used to include or exclude trace data from
specific address ranges. Triggers determine when trace collection is active by turning trace on or off instructions
that specific addresses are executed.

Receiver settings allow you to specify the trace receiver to be used to specify the bugger type and specify if
trace collection should be synchronized with the target execution. ETB is the only receiver option available for
this launchpad (leave the rest of the options as default). Due to the small size of the ETB, it's not possible to
capture core trace data for the entire application. Hence, you need to use triggers to enable and disable trace
collection at specific addresses. This allows us to only capture the trace data that you are interested without risk
of losing any data if the buffer wraps around. Our goal is to enable trace collection only around the part of the
toggles the GPIO pin that toggles the LED. You can found those addresses by setting breakpoints and look at
the Dissasembly of the breakpoints. Set start and stop addresess, and uncheck the "Trace on from start" option:

www.ti.com Debugging Real-Time Control Loops

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 39

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Hit on "Ok" and run the program (you can see that the program is running successfully since the led is blinking).
Once the program has finished running and the target is halted at the exit point, the captured data in the ETB is
sent to CCS and displayed in the core trace view. There you can see the data for each dace entry, data such as
program address, the associated opcode and so on.

9.2 Code Profile / Coverage
Sitara MCU devices support code coverage that is particularly suited for embedded applications. In addition to
being generally useful for thorough application development, code coverage is required by internal and external
developers in the Industrial and Automotive markets for Functional Safety.

In order to open the Code Coverage tool, click on Tools->Code Analysis->Code Profile / Coverage.

Debugging Real-Time Control Loops www.ti.com

40 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

The code coverage and profiling shows you how often a function / file is called, how much code of the file was
executed, how many instructions and cycles it took and more.

9.2.1 CCS Count Event

Count Event can be used to count different events, one of them being clock cycles. Using Count Event for
measuring clock cycles could be one method of profiling code.

1. Use the pulldown to select Count Event.

2. Enable a breakpoint in your code by double-clicking on the line in the source file.
3. Select the Resume icon. When the breakpoint is reached the Count Event will display the number of Clock

Cycles.

Note that the number of CPU cycles can vary greatly depending on the type of memory the code is running from
(Flash, RAM, external).

9.3 Real-Time UART Monitor
Real time debug is enabled by UART connection between CCS and Am243x. With real time debug, global
variables can be added to expression window and ready for read/write during continuous run of the program.
The connection is built by debug program in the listed files.

• Serial_Cmd_Monitor.c
• Serial_Cmd_Monitor.h
• Serial_Cmd_HAL.c
• Serial_Cmd_HAL.h

Even though there are four files listed here, there is only two functions required in application program. One
is "SerialCmd_init()" called in initialization and the other is "SerialCmd_read()" called in background loop of
BareMetal or low priority task of RTOS. This section focus on how to create the UART connection and how to
launch real time debug in CCS.

9.3.1 Confirm CCS Features

It is recommended to check the following CCS driver file if the CCS version is older than 11.1. The configuration
of Cortex_R5 should be similar to the below. If any line is missing, it is necessary to add it. As for the content of
the lines, COM Port and Baud Rate need to be updated in target configuration file, which is included in the next
step.

ccs\ccs_base\common\targetdb\drivers\gti_uart_driver.xml

<isaType="Cortex_R5" ProcID="0x75803400">
 <driverfile="../../../DebugServer/drivers/XPCOMToGTIAdapter.dvr">
 <propertyType="stringfield" Value="COM14" id="COM Port"/>
 <propertyType="stringfield" Value="9600" id="Baud Rate"/>
 <propertyType="hiddenfield" Value="Little Endian" id="Endianness"/>
 <propertyType="hiddenfield" Value="32" id="Word Size Page 0"/>
 <propertyType="hiddenfield" Value="8" id="Minimum Addressable Size Page 0"/>
 <propertyType="hiddenfield" Value="@ti.com/UARTMonitor;1" id="XPCOM Class ID"/>
 <propertyType="hiddenfield" Value="Flash DLL Delegate" id="TargetAccess"/>
 <connectionTypeType="UARTConnection"/>
 </driver>
</isa>

www.ti.com Debugging Real-Time Control Loops

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 41

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

9.3.2 Create Target Configuration File

A step-to-step guide is given in the screen shots shown below:

Figure 9-1. Create New Target Configuration File

Debugging Real-Time Control Loops www.ti.com

42 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Figure 9-2. Select JTAG Connection and Device

Figure 9-3. Add UART Communication Port

www.ti.com Debugging Real-Time Control Loops

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 43

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Figure 9-4. Open Advanced Target Configuration

Debugging Real-Time Control Loops www.ti.com

44 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Figure 9-5. Add Component

www.ti.com Debugging Real-Time Control Loops

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 45

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Figure 9-6. Select CPU Properties

Debugging Real-Time Control Loops www.ti.com

46 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Figure 9-7. Find XDS110 UART COM Port

www.ti.com Debugging Real-Time Control Loops

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 47

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Figure 9-8. Update CPU Properties in Advanced Target Configuration

Debugging Real-Time Control Loops www.ti.com

48 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

9.3.3 Add Serial Command Monitor Software

There are multiple ways to use UART0 as a debug interface. They are Debug Log and Serial Command
Monitor. Debug Log is a built-in tool located at Driver Porting Layer of SDK. Like Serial Cmd Monitor, its
function must be located out of interrupt callback. It is a handy tool enabling string input and output. But, input
and output go through UART console only. There is no built-in GUI like Expression Window and Graph in
CCS. It is recommended to disable UART0 in Debug Log at SysCfg and configure UART0 instance for Serial
Command Monitor. As the name of UART in Sysconfig, "CONFIG_UART_CONSOLE", matches the handle
name in "Serial_Cmd_HAL.c", it is not necessary to modify the two functions required by initialization and
background loop.

Figure 9-9. Disable UART Log in Debug Log

www.ti.com Debugging Real-Time Control Loops

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 49

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Figure 9-10. Configure UART0 Instance

Then, add the serial monitor functions that were used in the benchmark demo example:

void benchmarkdemo_foc_main(void)
{
 Drivers_open();
 DebugP_log("\r\n START FOC benchmark\r\n");
 App_statsInit(APP_ID_FOC);
 SerialCmd_init();
 while (1)
 {
 SerialCmd_read();
 if (App_timerHasExpired())
 {
 focLoop(1);
 }
 App_statsUpdateUI();
 }
 Drivers_close();
}

Debugging Real-Time Control Loops www.ti.com

50 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

9.3.4 Launch Real Time Debug

After building the program, the debug window should be opened with the target configuration file you created.
If the created target configuration file is not already opened, it can be located into "User Defined" folder of the
"Target Configuration" window. Right click on the file, a menu shows up and there is a option "Launch Selected
Configuration" as shown in Figure 9-11. Then, debug window shows up. The steps to connect target, load image
and run via JTAG can be found in many CCS tutorials. The processor must be running continuously before
connecting to UART. As the UART connection is based on continuous operation of the program, the UART
connection will be broken and CCS will be frozen by Break-point, Suspend, Terminate or any other events
stopping the Serial Command Monitor program from running. Sometimes, it is just a habit to use those features
when they are available. It is recommended to disconnect target via JTAG while using UART connection. When
the processor is running, UART connection can be established by simply select the UART connection → Run →
Load → Load Symbols

Figure 9-11. Locate Target Configuration File

www.ti.com Debugging Real-Time Control Loops

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 51

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Figure 9-12. Launch Selected Configuration

Figure 9-13. Disconnect JATG Connection

Debugging Real-Time Control Loops www.ti.com

52 Debugging Sitara AM2x Microcontrollers SPRAD28 – OCTOBER 2022
Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

Figure 9-14. Establish UART Connection

10 E2E Support Forums
If you have any questions or issues, create a thread on TI's E2E support forums.

www.ti.com E2E Support Forums

SPRAD28 – OCTOBER 2022
Submit Document Feedback

Debugging Sitara AM2x Microcontrollers 53

Copyright © 2022 Texas Instruments Incorporated

https://e2e.ti.com/
https://www.ti.com
https://www.ti.com/lit/pdf/SPRAD28
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRAD28&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	Trademarks
	1 Building for Debug
	1.1 Disable Code Optimization
	1.2 Using the Debug SDK Libraries

	2 Code Composer Studio Stop-Mode Debugging
	2.1 Configuring the Debugger
	2.2 Breakpoints and Watchpoints
	2.2.1 Software Breakpoints
	2.2.2 Hardware Breakpoints
	2.2.3 Watchpoints

	2.3 Inspecting Device Registers
	2.4 Inspecting Disassembly

	3 Debug Logging
	3.1 Logging Methods
	3.2 Log Zones
	3.3 Asserts
	3.4 Example Usage

	4 Multi-Core Debug
	4.1 Grouping Cores
	4.1.1 Fixed Group
	4.1.2 Hiding Cores

	4.2 Using Multiple Workbench Windows
	4.3 Global Breakpoints

	5 Debugging Arm Cortex-R5 Exceptions
	5.1 Exception Priority Order
	5.2 Aborts
	5.2.1 Data Aborts
	5.2.1.1 Alignment
	5.2.1.2 Background Aborts
	5.2.1.3 Permission
	5.2.1.4 Synchronous/Asynchronous External
	5.2.1.5 Synchronous/Asynchronous ECC

	5.2.2 Synchronous/Asynchronous Aborts
	5.2.2.1 Changing an Asynchronous Abort to a Synchronous Abort
	5.2.2.2 Synchronous Abort
	5.2.2.3 Asynchronous Abort
	5.2.2.4 Debugging Asynchronous Abort

	5.2.3 Prefetch Abort
	5.2.3.1 Possible Reasons for Prefetch Abort
	5.2.3.2 Handling Prefetch Abort Exception

	5.2.4 Undefined Instruction
	5.2.4.1 Possible Reasons for Undefined Instruction Exception
	5.2.4.2 Handling Undefined Instruction Exception

	5.3 Fetching Core Registers Inside an Abort Handler

	6 Debugging Arm Cortex-M4 Exceptions
	6.1 Exception Entry and Exit Sequence
	6.1.1 Entry Sequence
	6.1.2 Exception Exit Sequence
	6.1.3 Decoding EXC_RETURN Value

	6.2 Faults Handling
	6.2.1 There are 15 System Exceptions by Arm Cortex M Processors
	6.2.1.1 Causes of Faults

	6.2.2 HardFault Exception
	6.2.2.1 Causes of HardFault Exception

	6.2.3 Configurable Fault Exceptions
	6.2.3.1 Mem Manage Fault Exception
	6.2.3.2 BusFault Exception
	6.2.3.3 Usage Fault Exception

	6.2.4 Control Registers
	6.2.4.1 SHP - System Handler Priority Register

	6.2.5 Status Registers
	6.2.5.1 Undefined Instruction Handling Example
	6.2.5.2 Invalid State Handling Example

	6.2.6 Printing the Stack Frame

	7 Debugging Memory
	7.1 Viewing Device Memory
	7.2 Linker Command File (linker.cmd)
	7.2.1 The Memory Directive
	7.2.2 The Sections Directive

	7.3 Stack Overflow
	7.3.1 -fstack-protector
	7.3.2 -fstack-protector-strong
	7.3.3 -fstack-protector-all
	7.3.4 Enabling Stack Smashing Detection
	7.3.5 Enabling Stack Smashing Detection

	7.4 Variables and Expressions View in CCS
	7.5 Understanding Your Application's Memory Allocation
	7.6 FreeRTOS ROV

	8 Debugging Boot
	8.1 ROM Boot
	8.2 SBL Boot
	8.3 GEL Files
	8.3.1 Debugging Init Code
	8.3.1.1 Disable Auto-Run to Main

	9 Debugging Real-Time Control Loops
	9.1 Trace
	9.1.1 Processor / Core Trace
	9.1.2 How to Use CCS to Capture Trace Data on an AM243x

	9.2 Code Profile / Coverage
	9.2.1 CCS Count Event

	9.3 Real-Time UART Monitor
	9.3.1 Confirm CCS Features
	9.3.2 Create Target Configuration File
	9.3.3 Add Serial Command Monitor Software
	9.3.4 Launch Real Time Debug

	10 E2E Support Forums

