

Evaluation Board User Guide UG-420

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

Advantiv EVAL-ADV7850 Video Evaluation Board

FEATURES

4 HDMI inputs, 1 HDMI output

1 VGA input, 1 component input

1 CVBS input, 1 headphone output

1 audio DAC output, 1 audio ADC input

PC communication via RS-232 or USB interface

EQUIPMENT NEEDED

Computer with RS-232 (or USB) I/O to

Send scripts to the command line interface of the board Send commands to the repeater software of the board and view resulting software output

Control the board via Advantiv video evaluation software (AVES) application

Update the firmware of the board (if desired or necessary)

SOFTWARE NEEDED

Windows OS for controlling the board via AVES application RS-232 software for updating the firmware of the board (if desired or necessary)

GENERAL DESCRIPTION

The Advantiv® EVAL-ADV7850 video evaluation board (AVEB) is a low cost solution for evaluating the performance of the ADV7850 HDMI transceiver.

The evaluation board contains a Blackfin® ADSP-BF524 processor for system control. The evaluation board includes software (firmware) that provides a serial command interface to control the various features and functions of the board.

PHOTOGRAPH OF EVALUATION BOARD

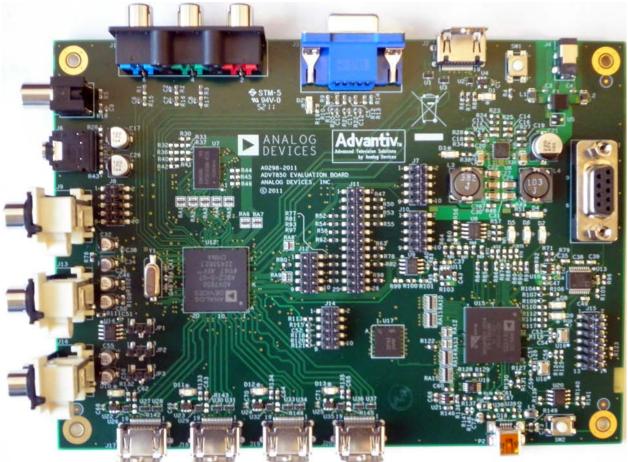


Figure 1. Advantiv EVAL-ADV7850 Video Evaluation Board with Factory Jumper Settings

UG-420

Evaluation Board User Guide

TABLE OF CONTENTS

Features]
Equipment Needed]
Software Needed	
General Description	1
Photograph of Evaluation Board	
Revision History	
Terminology	
Evaluation Board Hardware	

Evaluation Board Usage	4
Headers	
Audio Codec Funtionality	
Evaluation Board Software	
Upgrading the Firmware	.
Evaluation Board Block Diagram and Artwork	
Bill of Materials	8
Related Links	(

REVISION HISTORY

7/12—Revision 0: Initial Version

TERMINOLOGY

Source

A source outputs digital audio/video over a DVI/HDMI, component, VGA, or CVBS interface. This can be a DVD/Bluray player, set-top box, game console, or any other device with these outputs.

Sink

A sink accepts video through a DVI/HDMI interface. In the context of this user guide, sink nearly always refers to a display with DVI/HDMI input.

Repeater

With respect to this evaluation board, a repeater refers to the software that runs on the ADSP-BF524 and implements the link between a source and sink.

EVALUATION BOARD HARDWARE

EVALUATION BOARD USAGE

The evaluation board can be connected as shown in Figure 2. An HDCP license is required to purchase this board.

The RS-232 command line interface operates at a 115,200 baud rate with eight data bits, no parity bit, one stop bit, and no flow control. Typing **help** via RS-232 lists the commands that can be used to control the board, as well as the version of firmware and the build date.

The repeater software starts upon power-up, allowing an HDMI sink to receive content from an HDMI/HDCP source soon after it is connected.

There are three main ways to control the board:

- Commands via RS-232
- Repeater software via RS-232
- Advantiv video evaluation software (AVES)

Commands via RS-232

This mode uses the RS-232 command line interface. The ADSP-BF524 powers up to a known reset state and then outputs a prompt. At this point, commands can be entered. Typing **help** shows a list of available commands. Using the appropriate commands, the user can read/write registers in the ADV7850. All registers are at their reset values.

It is possible to stop the repeater software in this mode by issuing a stoprep command via the RS-232. To restart the repeater software issue a startrep command via the RS-232.

Repeater Software via RS-232

This mode uses the RS-232 command line interface to control the repeater software and to direct reads and writes to the ADV7850 registers. The repeater software outputs messages via RS-232 as events, such as encryption, formats, sink, or source changes, occur. Registers can still be read/written from the command line, but anything that is written to a register can be overwritten by the repeater software if it is running.

In this mode, there are additional commands from the repeater itself. All repeater commands are in the rep xxx format, where xxx is the repeater command. Issue a rep help command to view a list of the available repeater commands. These commands provide information about the state of the repeater, source, and sink.

AVES

AVES is a Windows*-based application that runs on a PC and allows the user to read/write registers in the ADV7850. The software also displays the individual bit fields for each register and allows the user to modify these individual bit fields. The software supports RS-232, USB, and I²C (using the Total Phase Aardvark I²C/SPI host adapter). Information about the video evaluation board is located on the EVAL-ADV7850 page on EngineerZone at ez.analog.com/docs/DOC-2152.

Additional information about the software is located at ez.analog.com/docs/DOC-1789. The latest version of the software can also be downloaded from this Web page.

HEADERS

This evaluation board has multiple 0.1 inch headers that connect to the digital audio/video signals (as well as some control signals). This provides users with easy access and maximum flexibility when evaluating devices.

Table 1 to Table 5 provide details about the physical arrangement on the board and may be useful when probing these signals.

Table 1. J11 Off-Board I2S

Pin	Function	Pin	Function
1	3.3 V	2	3.3 V
3	GND	4	HA_AP4
5	GND	6	HA_AP5
7	HA_AP0	8	HA_SCLK
9	HA_AP1	10	HA_MCLKOUT
11	HA_AP2	12	GND
13	HA_AP3	14	GND
15	GND	16	AC_MCLK
17	AC_SDI	18	AC_LRCLK
19	AC_SCLK	20	SPDIF_IN
21	NC	22	GND
23	SCL	24	SDA
25	GND	26	GND

Table 2. JP1, JP2, JP3

Pins Shorted	Function
JP1-1, JP1-2	DDC_5V to EDID PROM
JP2-1, JP2-2	DDC_SCL to EDID PROM
JP3-1, JP3-2	DDC_SDA to EDID PROM
JP1-2, JP1-3	Board 3.3 V to EDID PROM
JP2-2, JP2-3	Board SCL to EDID PROM
JP3-2, JP3-3	Board SDA to EDID PROM

Table 3. J12 TTX

Pin	Function	Pin	Function
1	HA_AP3	2	GND
3	TTX_SCLK	4	GND
5	TTX_MOSI	6	GND
7	TTX_MISO	8	GND
9	TTX_CSB11	10	GND

Table 4. J14 Resets/Interrupts

Pin	Function	Pin	Function
1	RESET_BUTTONn	2	GND
3	BF524_RESETn	4	GND
5	ADV7850_RESETn	6	GND
7	ADV7850_INT1	8	GND
9	ADV7850INT2	10	GND

Table 5. J10 General-Purpose Input/Output

Pin	Function	Pin	Function
1	GPIO_PF0	2	GND
3	GPIO_PF1	4	GND
5	GPIO_PF2	6	GND
7	GPIO_PF3	8	GND
9	GPIO_PF4	10	GND

AUDIO CODEC FUNTIONALITY

The audio codec requires an external MCLK. Insert the desired clock signal into J11-16 with CMOS-compliant amplitudes. Reference the Hardware Manual Paragraph 11.3 in DOC-2152 for nominal frequencies.

EVALUATION BOARD SOFTWARE

UPGRADING THE FIRMWARE

The software (firmware) on the evaluation board can be upgraded using the standard Blackfin development tools.

- VisualDSP++ 5.0 Update 8
- JTAG debugger for Blackfin processors (HPUSB-ICE or ICE-100B) connected to the JTAG connector (J7)

Using these tools, you can connect the evaluation board to the ADSP-BF524 processor, run a script, and program the SPI flash memory device (U10).

Most evaluation boards for Blackfin processors are shipped with the Das U-Boot boot loader firmware, and you can upgrade the firmware using only an RS-232 cable and software. If you see the following output after resetting the board or applying power, your evaluation board has U-Boot:

U-Boot 2010.06 (ADI-2010R1-RC2) (Jan 12 2011

```
- 15:53:34)
       ADSP bf524-0.2 (Detected Rev: 0.2)
CPU:
(spi flash boot)
Board: ADI Advantiv™ Video Evaluation Board
       Support: http://ez.analog.com
Clock: VCO: 300 MHz, Core: 300 MHz, System:
100 MHz
       8 MiB
```

SF: Detected M25P80 with page size 256, total 1 MiB

serial Tn: Out: serial serial Err:

KGDB: [on serial] ready

Hit any key to stop autoboot:

If your evaluation board has U-Boot, you can use the following steps to upgrade the application firmware of your board (if you determine that this is necessary). These instructions assume that you are using the latest version of Tera Term for Windows (which is free to download and use), but any RS-232 software with YMODEM upload capability should also work.

- After you see the hit any key to stop autoboot prompt, press a key during the countdown. You should then see a prompt, bfin >.
- At the prompt, type the following command:

```
sf probe 0:1
```

You should see the following:

```
SF: Detected M25P80 with page size 256,
total 1 MiB
1024 KiB M25P80 at 0:1 is now current
device
bfin>
```

3. At the prompt, type the following command:

You should see the following output:

```
## Ready for binary (ymodem) download to
0x00100000 at 115200 bps...
```

- 4. In Tera Term, under File, click Transfer and then YMODEM, and select Send...
- 5. Select the application firmware (for example, EVAL-ADV7850_v1p0_app.bin) and click Open.
- You should see the YMODEM send dialog box progress quickly from 0% to 100%. If the software stalls at Packet 1 or Packet 2 for a few seconds, you may need to cancel and retry. It is possible that you may need to repeat Step 3 through Step 5 a few times to accomplish the transfer. After the transfer is complete, you should see the following:

```
CCxyzModem - CRC mode,
0(SOH)/215(STX)/0(CAN) packets, 5 retries
                     = 0 \times 000357 fc = 219132
## Total Size
Bytes
bfin>
```

At the prompt, type the following command to erase the application area of the SPI flash memory:

```
sf erase 0x60000 0xa0000
You should then see the following output:
bfin>
```

At the prompt, type the following command to program the application area of the SPI flash memory:

```
sf write $(loadaddr) 0x60000 $(filesize)
You should then see the following output:
bfin>
```

At this point, if you reset your board and allow the countdown to complete, U-Boot should launch the application firmware that was just programmed.

EVALUATION BOARD BLOCK DIAGRAM AND ARTWORK

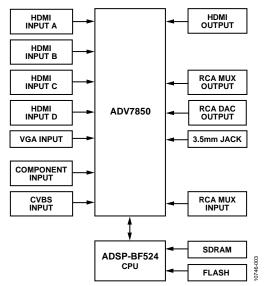


Figure 2. Block Diagram of the EVAL-ADV7850 (for the Evaluation Board Schematics, see DOC-2151)

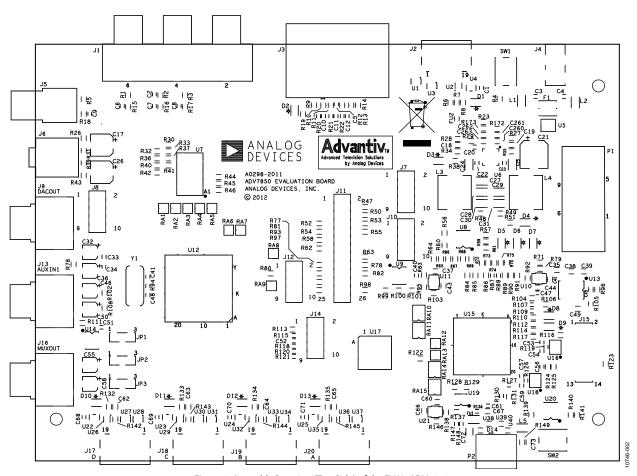


Figure 3. Assembly Drawing (Top Side) of the EVAL-ADV7850

BILL OF MATERIALS

Table 6. Evaluation Board Hardware Components

Reference Designator	Function	Description	
D1	Tx HPD	Hot plug detect signal of the HDMI transmitter. Indicates status of respective HDMI HPD.	
D10, D11, D12, D13	Rx HPD	Hot plug detect signal of the HDMI receiver. Indicates status of respective HDMI HPD.	
D2	VGA of 5 V	Indicator of 5 V variable gain amplifier connection.	
D3	1.8 V	Indicator of 1.8 V power supply.	
D4	5 V	Indicator of 5 V power supply.	
D5	LED	Read indicator. Illuminates when I ² C data is read from the board.	
D6	LED	Write indicator. Illuminates when I ² C data is written to the board.	
D7	LED	General indicators. Undefined at present.	
D8	Repeater	Repeater indicator. Indicates when repeater is active.	
D9	Heartbeat	Heartbeat LED. Blinks at ~0.5 Hz rate when code is running.	
J1	Component input	RCA component input.	
J10	GPIO	General-purpose input/output.	
J11	I ² S header	I ² C digital audio header.	
J12	VBI data processor header	TTX connection.	
J13	Audio codec mux input	RCA stereo audio mux input.	
J14	Chip reset/external interrupt header	Reset and interrupt header for external connection and monitoring.	
J16	Audio codec mux output	RCA stereo jack input.	
J2	HDMI output	This is the only video output connector.	
J17, J18, J19, J20	HDMI inputs	J20 is HDMI Port A, J19 is HDMI Port B, J18 is HDMI Port C, J17 is HDMI Port D.	
J3	VGA input	VGA input.	
J4	Power	Power input 5 V, 2.5 A	
J5	CVBS input	CVBS input.	
J6	HPOUT	3.5 mm stereo jack output.	
J7	SPI header	SPI header, Aardvark compliant.	
J8	I ² C header	I ² C header, Aardvark compliant.	
J9	DAC output	Stereo audio DAC output.	
JP1, JP2, JP3	EDID jumpers	Jumper headers for directly connecting EDID EPROM to either Port D or I ² C bus.	
P1	RS-232 port	RS-232 interface to the computer (for user control and debug output).	
P2	USB port	This USB port can be used instead of RS-232 if the computer in use does not have the RS-232 interface.	
SW1	Power switch	Momentary power-down switch. Emulates unplugging and plugging in the power supply.	
SW2	Reset switch	Switch that resets the ADSP-BF524.	

RELATED LINKS

Resource	Description	
ADV7850	Product Page, ADV7850 Complete AV Front End	
ADSP-BF524	Product Page, ADSP-BF524 Low Power Blackfin Processor with Advanced Peripherals and Low Standby Power	
DOC-2152	ADV7850 Design Support Files	
DOC-2151	Advantiv EVAL-ADV7850EBZ Video Evaluation Board	
DOC-1789	Advantiv Video Evaluation Software	

UG-420

Evaluation Board User Guide

NOTES

NOTES

UG-420

Evaluation Board User Guide

NOTES

 $I^2C \ refers \ to \ a \ communications \ protocol \ originally \ developed \ by \ Philips \ Semiconductors \ (now \ NXP \ Semiconductors).$

ESD Caution

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. UG10746-0-7/12(0)

www.analog.com