Functional Safety Information LMR36506-Q1 and LMR36503-Q1 Functional Safety FIT Rate, FMD and Pin FMA

TEXAS INSTRUMENTS

Table of Contents

1 Overview	2
2 Functional Safety Failure In Time (FIT) Rates	3
2.1 LMR36506-Q1	
2.2 LMR36503-Q1	3
3 Failure Mode Distribution (FMD)	5
4 Pin Failure Mode Analysis (Pin FMA)	
······································	

Trademarks

All trademarks are the property of their respective owners.

Overview

1 Overview

This document contains information for LMR36506-Q1 and LMR36503-Q1 (VQFN-HR package) to aid in a functional safety system design. Information provided are:

- Functional Safety Failure In Time (FIT) rates of the semiconductor component estimated by the application of industry reliability standards
- Component failure modes and their distribution (FMD) based on the primary function of the device
- Pin failure mode analysis (Pin FMA)

Figure 1-1 shows the device functional block diagram for reference.

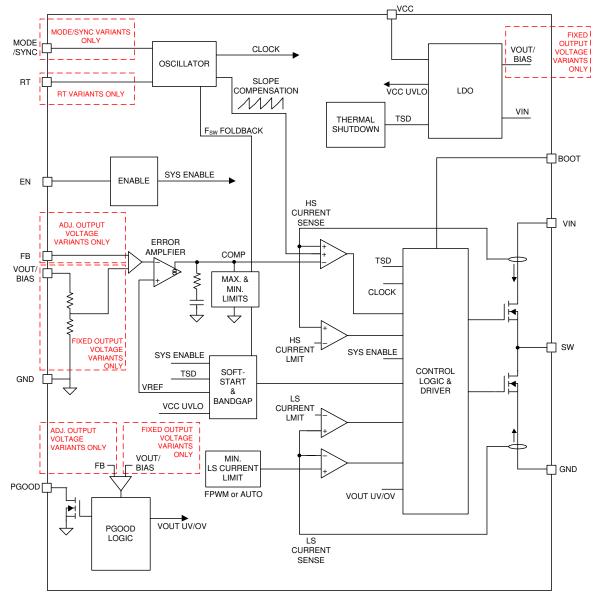


Figure 1-1. Functional Block Diagram

LMR36506-Q1 and LMR36503-Q1 was developed using a quality-managed development process, but was not developed in accordance with the IEC 61508 or ISO 26262 standards.

ADVANCE INFORMATION for preproduction products; subject to change without notice.

2 Functional Safety Failure In Time (FIT) Rates 2.1 LMR36506-Q1

This section provides Functional Safety Failure In Time (FIT) rates for LMR36506-Q1 based on two different industry-wide used reliability standards:

- Table 2-1 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-2 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-1. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)
Total Component FIT Rate	20
Die FIT Rate	12
Package FIT Rate	8

The failure rate and mission profile information in Table 2-1 comes from the Reliability data handbook IEC TR 62380 / ISO 26262 part 11:

- Mission Profile: Motor Control from Table 11
- Power dissipation: 600 mW
- Climate type: World-wide Table 8
- Package factor (lambda 3): Table 17b
- Substrate Material: FR4
- EOS FIT rate assumed: 0 FIT

Table 2-2. Component Failure Rates per Siemens Norm SN 29500-2

Table		Category	Reference FIT Rate	Reference Virtual T _J
	5	CMOS/ BICMOS ASICs Analog & Mixed HV >50-V supply	30 FIT	75°C

The Reference FIT Rate and Reference Virtual T_J (junction temperature) in Table 2-2 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

2.2 LMR36503-Q1

This section provides Functional Safety Failure In Time (FIT) rates for LMR36503-Q1 based on two different industry-wide used reliability standards:

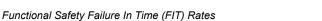

- Table 2-3 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-4 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-3. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)
Total Component FIT Rate	14
Die FIT Rate	6
Package FIT Rate	8

The failure rate and mission profile information in Table 2-3 comes from the Reliability data handbook IEC TR 62380 / ISO 26262 part 11:

- Mission Profile: Motor Control from Table 11
- Power dissipation: 300 mW
- Climate type: World-wide Table 8
- Package factor (lambda 3): Table 17b
- Substrate Material: FR4
- EOS FIT rate assumed: 0 FIT

Table 2-4. Component Failure Rates per Siemens Norm SN 29500-2			
Table	Category	Reference FIT Rate	Reference Virtual T _J
5	CMOS/ BICMOS ASICs Analog & Mixed HV >50V supply	30 FIT	75°C

The Reference FIT Rate and Reference Virtual T_J (junction temperature) in Table 2-4 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

3 Failure Mode Distribution (FMD)

The failure mode distribution estimation for LMR36506-Q1 and LMR36503-Q1 in Table 3-1 comes from the combination of common failure modes listed in standards such as IEC 61508 and ISO 26262, the ratio of subcircuit function size and complexity and from best engineering judgment.

The failure modes listed in this section reflect random failure events and do not include failures due to misuse or overstress.

Die Failure Modes	Failure Mode Distribution (%)			
No Output Voltage	60%			
Output not in specification - voltage or timing	30%			
Gate Driver stuck on	5%			
Power Good - False Trip or Failure to Trip	5%			

The FMD in Table 3-1 excludes short circuit faults across the isolation barrier. Faults for short circuit across the isolation barrier can be excluded according to ISO 61800-5-2:2016 if the following requirements are fulfilled:

- 1. The signal isolation component is OVC III according to IEC 61800-5-1. If a SELV/PELV power supply is used, pollution degree 2/OVC II applies. All requirements of IEC 61800-5-1:2007, 4.3.6 apply.
- 2. Measures are taken to ensure that an internal failure of the signal isolation component cannot result in excessive temperature of its insulating material.

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance.

4 Pin Failure Mode Analysis (Pin FMA)

This section provides a Failure Mode Analysis (FMA) for the pins of the LMR36506-Q1 and LMR36503-Q1. The failure modes covered in this document include the typical pin-by-pin failure scenarios:

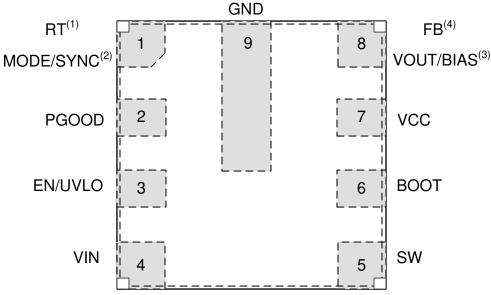

- Pin short-circuited to Ground (see Table 4-2)
- Pin open-circuited (see Table 4-3)
- Pin short-circuited to an adjacent pin (see Table 4-4)
- Pin short-circuited to supply (see Table 4-5)

Table 4-2 through Table 4-5 also indicate how these pin conditions can affect the device as per the failure effects classification in Table 4-1.

Class	Failure Effects		
A	Potential device damage that affects functionality		
В	No device damage, but loss of functionality		
C	No device damage, but performance degradation		
D	No device damage, no impact to functionality or performance		

Table 4-1. TI Classification of Failure Effects

Figure 4-1 shows the LMR36506-Q1 and LMR36503-Q1 pin diagram. For a detailed description of the device pins please refer to the *Pin Configuration and Functions* section in the LMR36506-Q1 and LMR36503-Q1 data sheet.

1. See the datasheet for more details. Pin 1 trimmed and factory-set for externally adjustable switching frequency RT variants only.

2. Pin 1 factory-set for fixed switching frequency MODE/SYNC variants only.

3. Pin 8 trimmed and factory-set for fixed output voltage VOUT/BIAS variants only.

4. Pin 8 factory-set for adjustable output voltage FB variants only.

Figure 4-1. Pin Diagram

Table 4-2. Pin FMA for Device Pins Short-Circuited to Ground

Pin Name	Pin No.	Description of Potential Failure Effect(s)	Failure Effect Class
RT or MODE	1	Switching Frequency is 2.2 MHz	D
PGOOD	2	When not in use can be left grounded (PGOOD is not a valid signal, VOUT normal)	D
EN/UVLO	3	VOUT = 0V (Enable is off, functionality is halted)	D
VIN	4	VOUT = 0V	В
SW	5	Damage HSFET	A

	Table 4	2. Pin FMA for Device Pins Short-Circuited to Ground (continued)		
Pin Name	Pin Name Pin No. Description of Potential Failure Effect(s)			
BOOT	6	VOUT = 0V, HS won't turn on	В	
VCC	7	VOUT = 0V	В	
VOUT/BIAS or FB	8	VOUT = 0V	В	
GND	9	VOUT normal	В	

Table 4-3. Pin FMA for Device Pins Open-Circuited

Pin Name	Pin No.	Description of Potential Failure Effect(s)	Failure Effect Class
RT or MODE	1	If its RT part, frequency will not be defined. If it's a MODE/SYNC part, then part could go back/ forth between FPWM/PFM. Part will be up, part functional.	D
PGOOD	2	When not in use, can be left open (PGOOD is not a valid signal, VOUT normal)	D
EN/UVLO	3	Pin cannot be left floating	В
VIN	4	VOUT = 0V	В
SW	5	VOUT = 0V	В
BOOT	6	VOUT = 0, HS won't turn on	В
VCC	7	VCC output will be unstable, can increase above 5.5V	A
VOUT/BIAS or FB	8	VOUT = 0V. Do not float this pin	С
GND	9	Vout could be abnormal, as reference voltage is not fixed	С

Table 4-4. Pin FMA for Device Pins Short-Circuited to Adjacent Pin

Pin Name	Pin No.	Shorted to	Description of Potential Failure Effect(s)	Failure Effect Class
RT or MODE	1	PGOOD	If PGOOD is high, and < 5.5V Fsw = 1MHz; If PGOOD is low, Fsw = 2.2MHz .PGOOD absmax being 20V, RT ESD will damage if PG goes to 20V	А
PGOOD	2	EN/UVLO	If EN/UVLO >20 V, it will damage devices connected to PGOOD pin.	A
EN/UVLO	3	VIN	VOUT normal (Enable is on, all other blocks will work)	D
VIN	4	SW	Damage LSFET	А
SW	5	BOOT	VOUT = 0V, HS won't turn on, no Cboot	В
BOOT	6	VCC	Damage will occur, break VCC Pin	A
VCC	7	VOUT/BIAS or FB	Will not work, but no damage will occur	В
VOUT/BIAS or FB	8	GND	VOUT = 0V	В
GND	9	RT or MODE	VOUT normal if RT/MODE/SYNC pin is low, otherwise not functional	В

Table 4-5. Pin FMA for Device Pins Short-Circuited to supply

Pin Name	Pin No.	Description of Potential Failure Effect(s)	Failure Effect Class
RT or MODE	1	If Vin > 5.5V, damage will occur. If Vin <5.5V, switching frequency is 1 MHz	А
PGOOD	2	If VIN >20 V, it will damage PGOOD	A
EN/UVLO	3	VOUT normal (Enable is on, all other blocks will work)	D
VIN	4	VOUT normal	D
SW	5	Damage LSFET	A
BOOT	6	Damage will occur, BOOT ESD clamp will be damaged	A
VCC	7	If Vin > 5.5, damage will occur	A
VOUT/BIAS or FB	8	If VIN > 20 V, damage will occur	A
GND	9	VOUT = 0V	В

7

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated