ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Design Note – DN05105/D

30W TYPE-C PD3.0 / QC3.0 Power Adapter Solution with WT6632F

ON's Device	Application	Input Voltage	Output Power	Topology	I/O Isolation
NCP1342AMDAAD1	Smart phone, PAD				
NCP4306AADZZZA	and NB adapter	90 Vac to 264	30 W	Flyback	Isolated
NTMFS6B03	supporting PD3.0	Vac	30 W	Flyback	(3 kV)
ATP104	and QC3.0				

	PD Output Specification	QC Output Specification
Output Voltage	5 V, 9 V, 12 V, 15 V, 20 V	5 V, 9 V, 12 V
Nominal Current	5V/3A, 9V/3A, 12V/2.5A,15V2A, 20V/1.5A	5 V / 3 A, 9 V / 2.67 A, 12 V / 2 A
Max Current	5V/3A, 9V/3A, 12V/2.5A,15V2A, 20V/1.5A	5 V / 3 A, 9 V / 2.67 A, 12 V / 2 A
Min Current	zero	zero

Avg. Efficiency	>90% @ 20 V 1.5 A at board end, 115 & 230 Vac
Ripple	<120mV
Standby Power	<30mW @ 5 V & 230 Vac (No cable plug in)
Power Density	1W/cm^3
Protection	Adaptive UVP, OVP, OVP, SCP, OTP
Size	57mmx36mmx15mm

Circuit Description

This design note describes a 30 W, Type C interface PD3.0, universal AC input, constant voltage power supply intended for smart phone, PAD and NB adaptor supporting PD3.0 or QC3.0 protocol, where isolation from the AC mains is required, and low cost, high efficiency, and low standby power are essential.

The featured power supply is a simple QR flyback topology utilizing ON Semiconductor's NCP1342 HF PWM controller, NCP4306D synchronous rectified controller, NTMFS6B03 synchronous MOSFET and ATP104 Switch MOSFET. This Design Note provides the complete circuit schematic details, PCB and BOM for 45 W Type C Interface PD3.0 Power adapter solution which supports PD output (5 V / 3 A, 9 V / 3 A, 12 V / 2.5 A, 15 V / 2 A, 20 V / 1.5 A).

This design combined with Weltrend WT6632F PD3.0 protocol controller to provide PD3.0 and

QC3.0 functions. This design also proposes a dual auxiliary power supply to supply PWM controller, the PWM controller is supplied by high voltage auxiliary voltage at low output voltage and supplied by low voltage auxiliary voltage at high output voltage and also shuts down zener bias of high voltage Vcc while low voltage auxiliary voltage supplies controller.

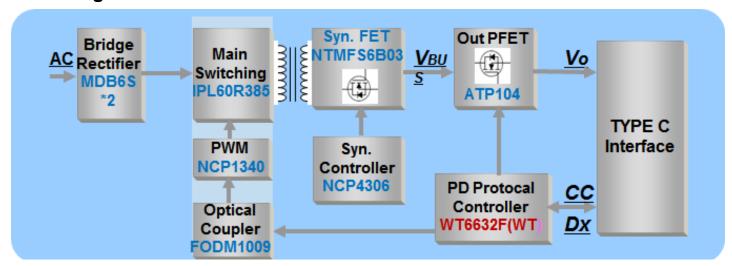
This design also uses NCP4306 synchronous rectified controller to provide high efficiency and also has no external Vcc regulator to supply synchronous controller to ensure controller can works below 3.6 V.

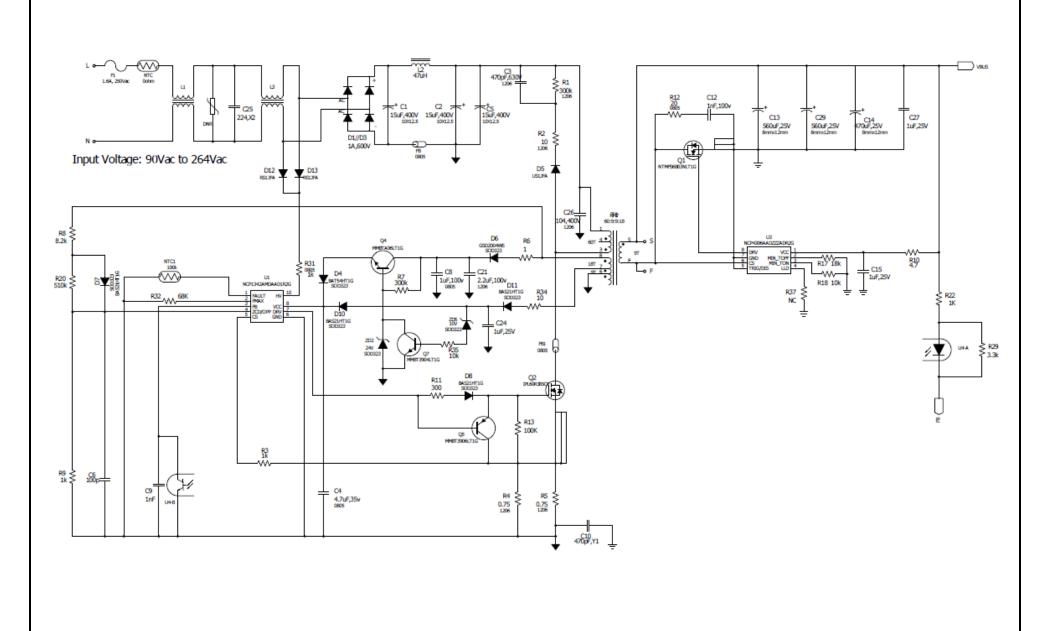
Key Features

- Universal AC input range (90 264 Vac)
- Very low standby (5 V & 230 Vac) power consumption with no cable plug in
- Very low ripple and noise
- Inherent SCP and OCP protection
- High operation frequency up to 150kHz
- High power density (1W/cm³)
- Quick switching off FET while unplugging cable and switching on FET at Vbus dropping to 5 V while plugging cable again

- Quasi-Resonant current mode control with Valley Switching
- Valley lockout avoids audible noise at valley jumping operation
- Support TYPE-C PD3.0 & QC3.0 protocol
- Adaptive Output OVP and UVP
- Open loop protection
- Board size: 57mmx36mmx19mm

Block Diagram and BOARD Photos




Figure 1, Overall cycle of 30W TYPE-C PD Adapter Solution

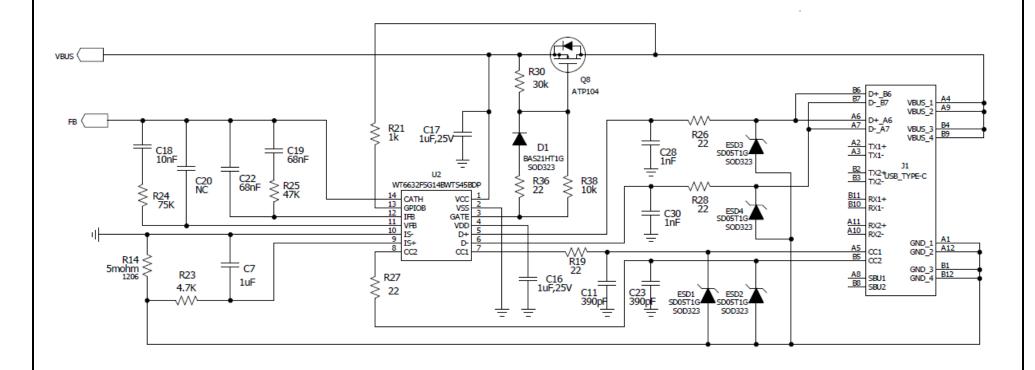

Figure 2, Side view 1 of demoboard

Figure 3, Side view 2 of demoboard

DN05105/D Circuit Schematic

DN05105/D Circuit Schematic (Continued)

www.onsemi.com

DN05105/D PCB

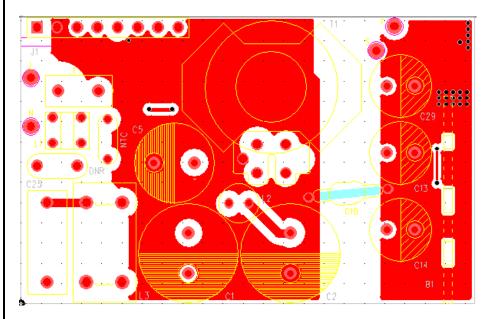


Figure 3, Top View of Mainboard's PCB

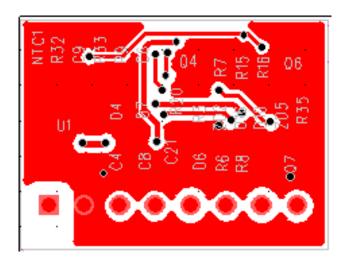


Figure 5, Top View of PWM control board's PCB

Figure 4, Bottom View of Mainboard's PCB

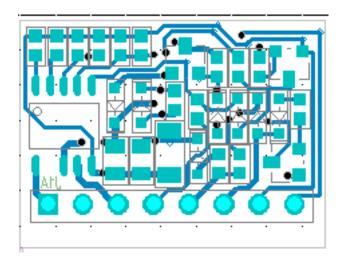
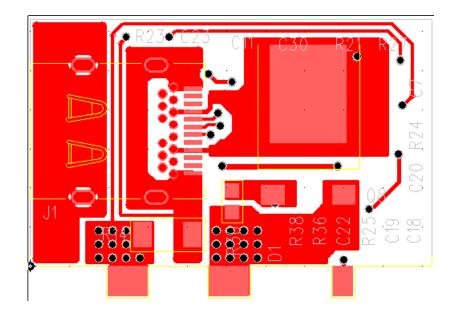
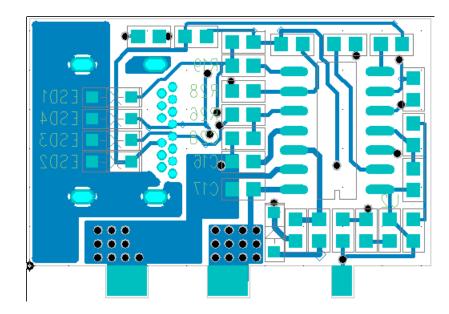



Figure 6, Bottom View of PWM control board's PCB

DN05105/D PCB Layout(Cont'd)



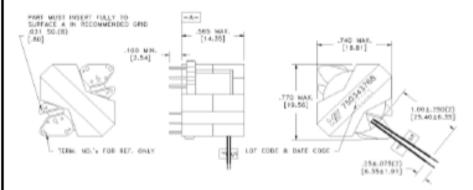
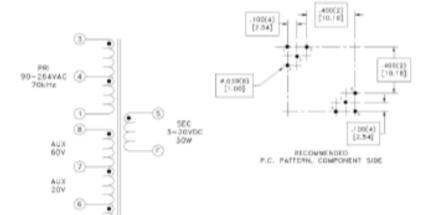

Figure 7, Top View of PD control board (WT6632F)'s PCB

Figure 8, Bottom View of PD control board (WT6632F)'s PCB

T1 Transformer Designs (Available from Wurth Electronics)



ELECTRICAL SPECIFICATIONS @ 25° C unless otherwise noted:

PARAMETER		TEST CONDITIONS	VALUE
D.C. RESISTANCE	1-3	@20°C	0.59 ohms max.
D.C. RESISTANCE	S-F	@20°C	0.03 ohms max.
D.C. RESISTANCE	6-7	@20°C	0.36 ohms max.
D.C. RESISTANCE	7-8	@20°C	0.74 ohms max.
INDUCTANCE	1-3	10kHz, 1.0V, Ls	530.00µH ±10%
LEAKAGE INDUCTANCE	1-3	tle(6+7+8+S+F),100kHz, 100mV, Ls	12µH max.
DIELECTRIC	1-8	tle(4+6), 3000VAC, 1 second	
TURNS RATIO		(3-1):(8-F)	6.67:1, ±2%
TURNS RATIO		(3-1):(8-7)	3.33:1, ±2%
TURNS RATIO		(3-1):(7-6)	6.67:1, ±2%

GENERAL SPECIFICATIONS:

OPERATING TEMPERATURE RANGE: -40°C to +125°C including temp rise. Designed to comply with the following requirements as defined by IEC80950-1,

EN80950-1, UL60950-1/CSA60950-1 and AS/NZS60950.1:

- Reinforced insulation for a primary circuit at a working voltage of 265Vrms, 400Vpeak, Overvoltage Category II.

Wire insulation & RoHS status not affected by wire color. Wire insulation color may vary depending on availability.

DFM Packaging Specifications DATE Method: Tray PKG-0103 ENG ľΥU REV. 00 DATE 11/10/201

SHIELD

CONVENTION PLACEMEN www.www.notes.com/etance

Folerances unless otherwise specified: Angles: ±1° Decimals: ±.005 [.13]

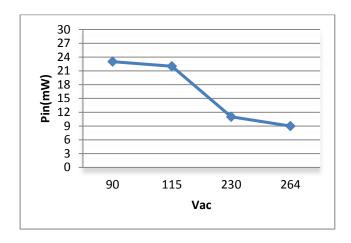
Fractions: ±1/64 Footprint: ± .001 [.03]

This drawing is dual dimensioned. Dimensions in brackets are in millimeters.

DRAWING TITLE

TRANSFORMER

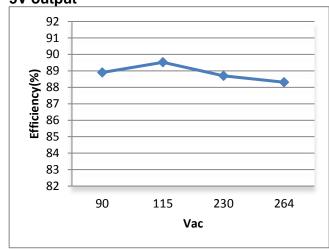
PART NO.

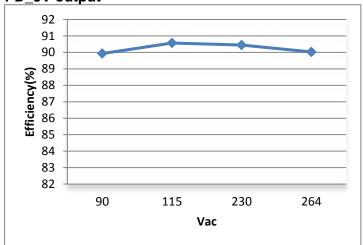

750343768

SPECIFICATION SHEET 1 OF 1

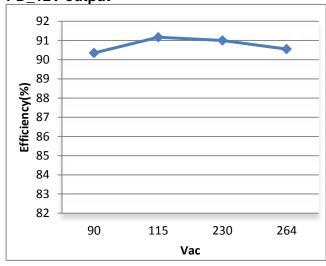
Sn 96%, Ag 4%

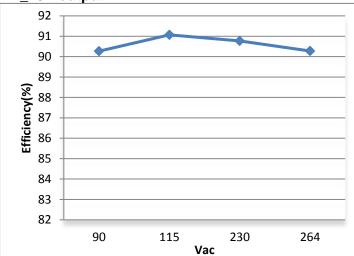
Standby Power at 5V Output (Cable unplug) @ 90 Vac to 264 Vac Input

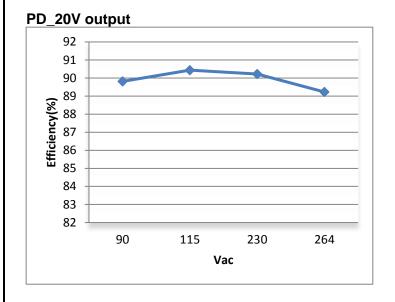

Test condition: all efficiency are tested at board end


Average Efficiency

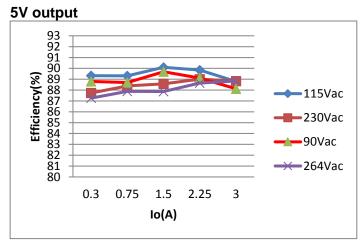
Test condition: all efficiency are tested at board end

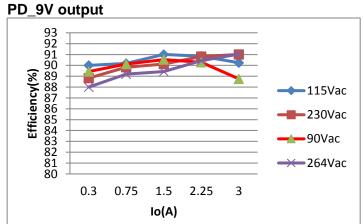


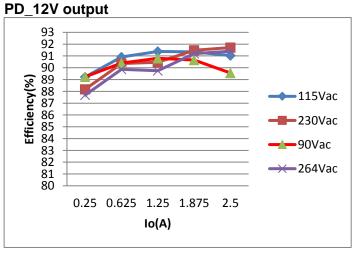

PD_9V output

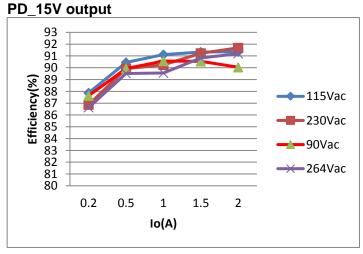

PD_12V output

PD_15V output

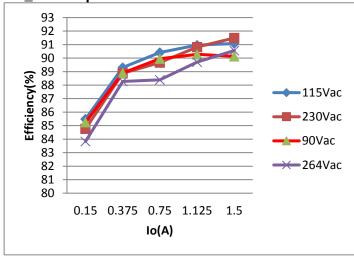


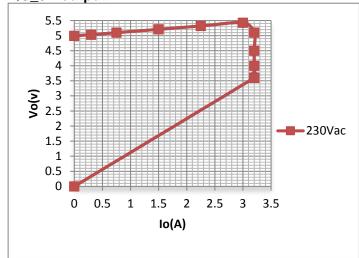

Average Efficiency (Continued) Test condition: all efficiency are tested at board end



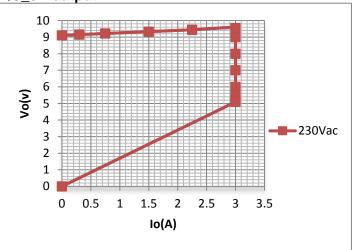

Efficiency vs Output Load Curves

Test condition: all efficiency are tested at board end

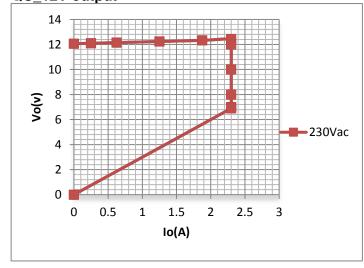


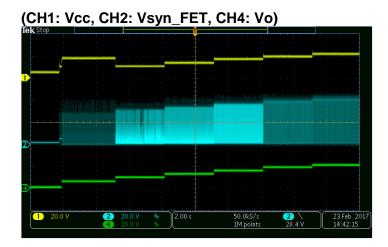

Efficiency vs Output Load Curves(Continued) Test condition: all efficiency are tested at board end

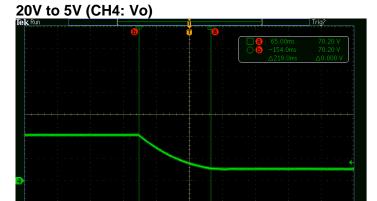
PD_20V output



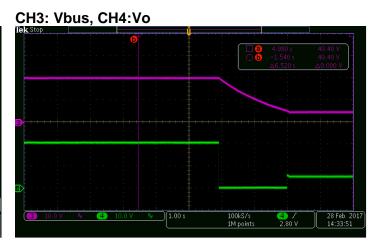
I-V Curves

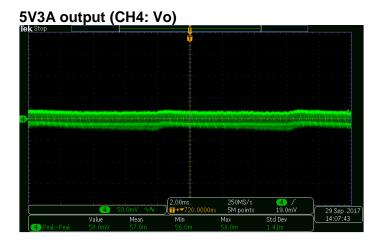

QC_5V output

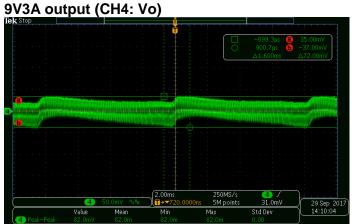

QC_9V output

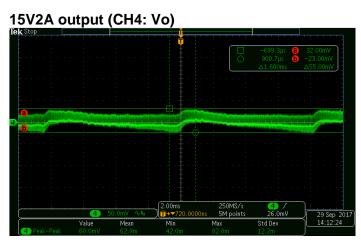

QC_12V output

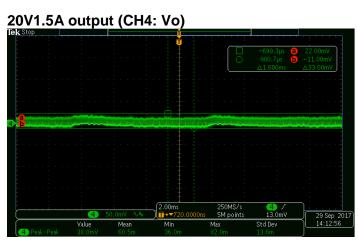
Power On and PD Volatge Change


PD Transition with PD Emulator

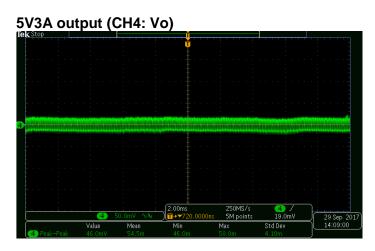

Discharge Time @ Unplug cable

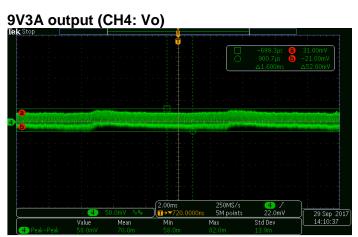

PD (20V to 5V) (CH1: Vcc, CH2: Vsyn_FET, CH3: Vbus, CH4: Vo) Tek Run Trig? 1 20.0 V 2 20.0 V 40.0ms 2.50MS/s 10.0 V 23 Feb 2017 Type Source Coupling Slope Level Normal 8. Holdoff

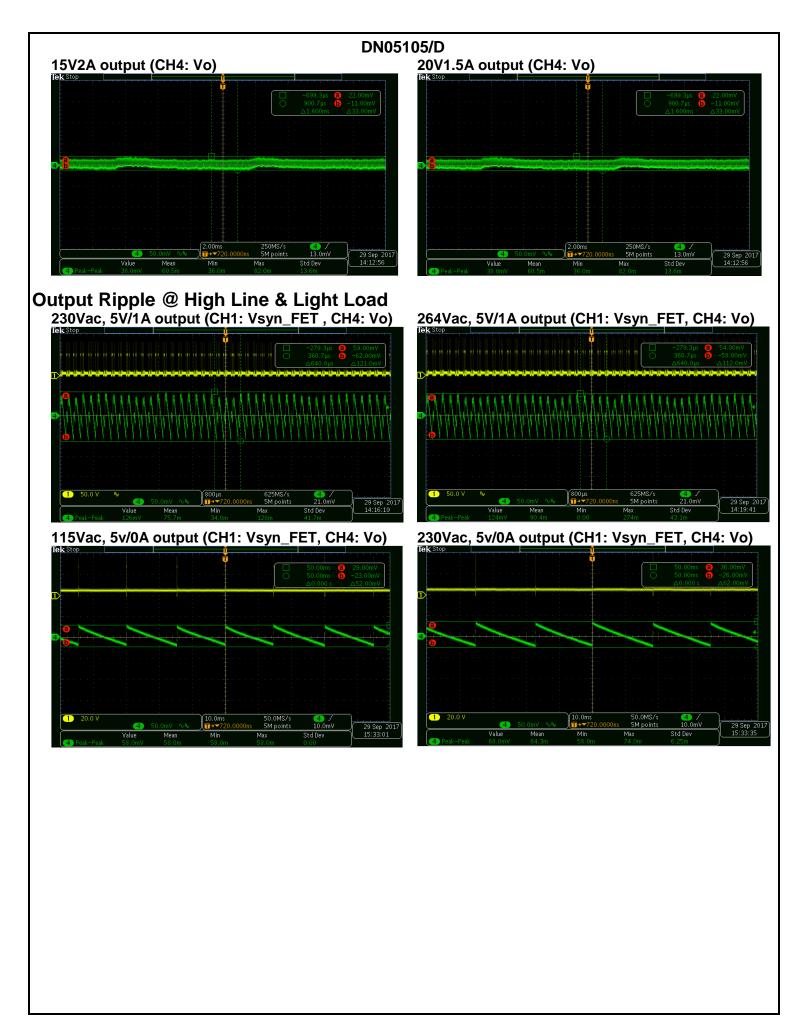

Quick Unplug/Plug Cable

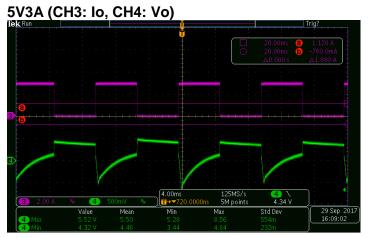


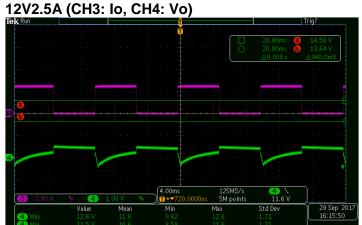
Output Ripple @ 90 Vac Input, full load

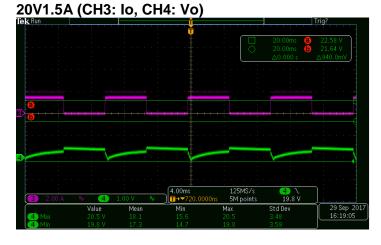


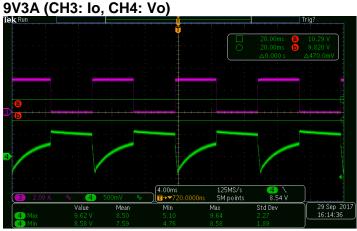


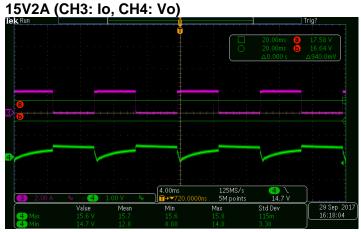



Output Ripple @ 115 Vac Input, full load

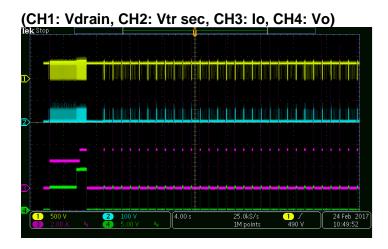



Dynamic Test @ 115 Vac Input


Test condition: 0-3A, 10mS cycle, 125mA/Us 1m cable, tested at E-load

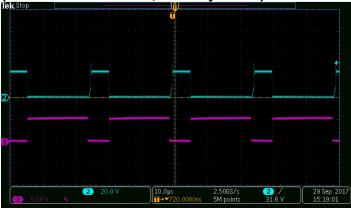

Test condition: 0-2.5A, 10mS cycle, 125mA/Us 1m cable, tested at E-load

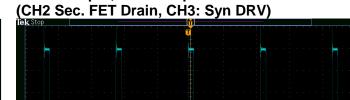
Test condition: 0-1.5A, 10mS cycle, 125mA/Us 1m cable, tested at E-load

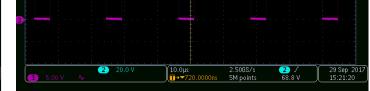


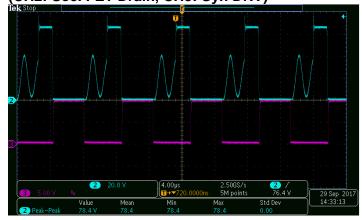
Test condition: 0-3A, 10mS cycle, 125mA/Us 1m cable, tested at E-load

Test condition: 0-2A, 10mS cycle, 125mA/Us 1m cable, tested at E-load


OCP @ 264 Vac Input, 9 Vdc Output

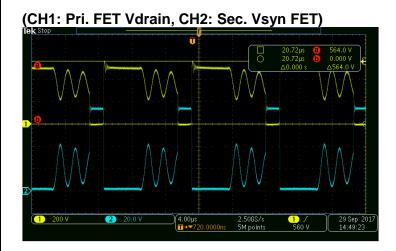

Synchronic Drive


90 Vac input, 5V3A output

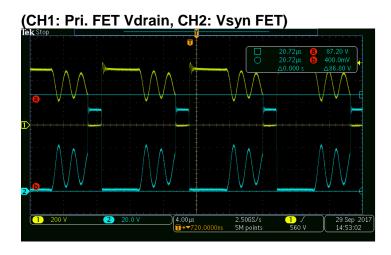

264 Vac input, 5V3A output

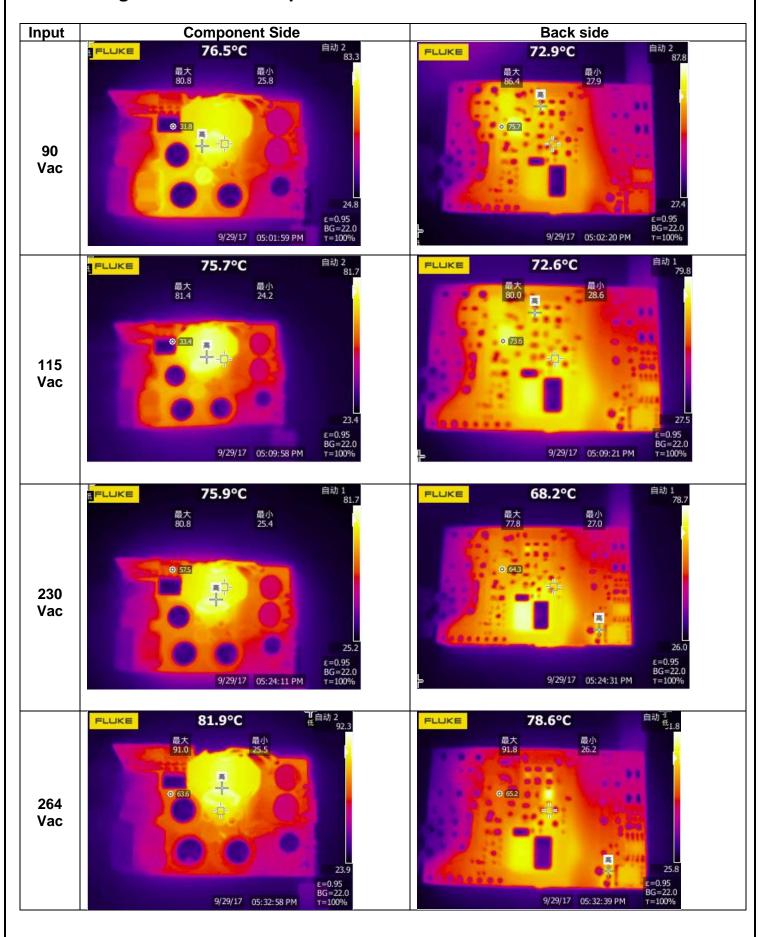
230 Vac input, 15V2A output

(CH2: Sec. FET Drain, CH3: Syn DRV)



230 Vac input, 20V1.5A output




Primary FET Drain Voltage @ 264 Vax input, 20V1.5A output

Synchronic FET Drain Voltage @ 264 Vax input, 20V1.5A output

Thermal Image @ 20V2.25A Output

DN05105/D)
BOM	

Item	Qty	Reference	Type	Part Name	MFR	Value	Package	Description
1			Ceramic Capacitor	/885012206077	WE	100p	603	Capacitor, Ceramic, 50V, 10%
2			Ceramic Capcitor			104, 400V		Capacitor, Ceramic, SMD, 5%
3			Ceramic Capacitor			10nF		Capacitor, Ceramic, 50V, 10%
4			Ceramic Capacitor			1nF		Capacitor, Ceramic, 50V, 10%
5			Ceramic Capacitor			1nF, 100v		Capacitor, Ceramic, SMD, 5%
6			Ceramic Capacitor			1uF, 100v		Capacitor, Ceramic, 100V, 10%
7			Ceramic Capacitor			1uF, 25V		Capacitor, Ceramic, 25V, 10%
8			Ceramic Capacitor			2. 2uF, 100v		Capacitor, Ceramic, 100V, 10%
9				/890324023028				X2 capacitor, Safety standard approved, 10
10			Ceramic Capacitor			390pF		Capacitor, Ceramic, 50V, 10%
11			Ceramic Capacitor			4. 7uF, 35v		Capacitor, Ceramic, 35V, 10%
12	1		Ceramic Capcitor			470pF, 630V		Capacitor, Ceramic, Chip, 5%
13	1		Ceramic Capcitor		TDK	470pF, Y1		HV Ceramic Capacitor, safety standard appro
14	2		Ceramic Capacitor			68nF		Capacitor, Ceramic, 50V, 10%
15			Ceramic Capacitor	Std	std	NC	603	Capacitor, Ceramic, 50V, 10%
16	1	D1//D3	Bridge rectifier	MDB6S	FSC	1A, 600V	icro-DIP	Bridge Rectifier, 600V, 1A
17	1	DNR	Varistor	820573011		10D471K	TH	Varistor, 10D471K
18	5	D1 D7 D8 D10-	Switching diode	BAS21HT1G	ON	0. 2A, 250V	S0D323	Switching diode, SMD
19	1	D6	Switching diode	GSD2004WS	Vishay	0. 2A, 300V	S0D323	Switching diode, SMD
20	1	D4	Switching diode	BAT54HT1G	ON	0. 2A, 30V	S0D323	Switching diode, SMD
21	1	D5	Ultrafast rectifi	US1JFA	ON (FSC)	0.8A,600V	SOD123FL	Standard Rectifier, 0.8A, 600V
22	2	D12-13	Standard rectifie	RS1JFA	ON (FSC)	0.8A,600V	SOD123FL	Standard Rectifier, 0.8A, 600V
23	1	FB	Ferrite bead	UPZ2012E102-1R57	Sunlord	/WE	805	1000ohm@100MHz
24	1	FB1	Ferrite bead	UPZ2012E601-2R07	Sunlord	/WE	805	600ohm@100MHz
25	1	L3	Common filter	/744821110	WE	10mH	TH type	CM Filter, T type core
26	1	L1	Common filter	150-1327	WE	500uH	TH	T type, 6.3x3x3, 11T, 0.2mmx2 in parallel
27	1	F1	Fuse	20T-016H	Hollyfu	1. 6A, 250Va	ial lead	Micro Fuse, 1.6A/250V
28	1	Q4	NPN Transistor	MMBTA06LT1G	ON		SOT23	General NPN Transistor, SMD
29	1	Q7	NPN Transistor	MMBT3904LT1G	ON		SOT23	General NPN Transistor, SMD
30	1	Q5	PNP Transistor	MMBT3906LT1G	ON		SOT23	General PNP Transistor, SMD
31	1	U3	Syn. rectified co	NCP4306AADZZZADI	ON		S08	Syn. Rectified Controller
32	1	U1	PWM Controller	NCP1342AMDAAD1R2	ON		SOP9	QR PWM controller
33	1	NTC	NTC	replaced by jump	Sunlord	0ohm	ead type	9mm Die, 2.5ohm
34	1	NTC1	NTC	SDNT1608X104J425	Sunloar	100k	603	
35	1	U4	Optical coupler	FODM1009	ON (FSC)		LS0P4	optical coupler, standard SOP package
36	1	Q8	PMOS	ATP104	ON	-30V, 8.4m	ATPAK	PMOS

www.onsemi.com

	DN05105/D BOM (Continued)							
Item	Qty	Reference	Type	Part Name	MFR	Value	Package	Description
37			Axial leaded fixe	/7447462470	Wurth	47uH	_	Axial leaded fixed inductor
38			MOSFET	IPL60R385CP	Infineo			MOSFET, NChan, 600V
39			Resistor	Std	Std	1		Resistor, Chip, 1/8W, 1%
40			Resistor	Std		10		Resistor, Chip, 1/8W, 1%
41			Resistor	Std		100K		Resistor, Chip, 1/8W, 1%
42	3		Resistor	Std	Std	10k		Resistor, Chip, 1/8W, 1%
43			Resistor	Std	Std	18k		Resistor, Chip, 1/8W, 1%
44	4	R3 R9 R21 R22	Resistor	Std	Std	1k		Resistor, Chip, 1/8W, 1%
45	5	R19 R26-28 R3	Resistor	Std	Std	22	603	Resistor, Chip, 1/8W, 1%
46	1	R29	Resistor	Std	Std	3. 3k	603	Resistor, Chip, 1/8W, 1%,
47	1	R11	Resistor	Std	Std	300	603	Resistor, Chip, 1/8W, 1%
48	1	R7	Resistor	Std	Std	300k	603	Resistor, Chip, 1/8W, 1%
49	1	R30	Resistor	Std	Std	30k	603	Resistor, Chip, 1/8W, 1%
50	1	R10	Resistor	Std	Std	4.7	603	Resistor, Chip, 1/8W, 1%
51	1	R23	Resistor	Std	Std	4.7K	603	Resistor, Chip, 1/8W, 1%
52	1	R25	Resistor	Std	Std	47K	603	Resistor, Chip, 1/8W, 1%
53	1	R20	Resistor	Std	Std	510k	603	Resistor, Chip, 1/8W, 1%
54	1	R32	Resistor	Std	Std	68K	603	Resistor, Chip, 1/8W, 1%
55	1	R24	Resistor	Std	Std	75K	603	Resistor, Chip, 1/8W, 1%
56	1	R8	Resistor	Std	Std	8. 2k	603	Resistor, Chip, 1/8W, 1%
57	1	R37	Resistor	Std	Std	NC	603	Resistor, Chip, 1/8W, 1%
58	2	R4-5	Resistor	ERJ8BQFR075V	Panason	0.75		Resistor, Chip, 1/2W, 1%
59	1	R2	Resistor	Std	Std	10		Resistor, Chip, 1/4W, 1%
60	1	R31	Resistor	Std	Std	1k	805	Resistor, Chip, 1/5W, 1%
61	1	R12	Resistor	Std	Std	20	805	Resistor, Chip, 1/5W, 1%
62			Resistor	Std	Std	300k	1206	Resistor, Chip, 1/4W, 1%
63			Resistor	ERJ8BWFR005V	Panason	5mohm	1206	Resistor, Chip, 1/2W, 1%
64	1	T1	Transformer	750343768	WE		TH type	RM7, 8Pin
65			Electrolytic capa	KM series				size, 10mmx12.5mm
66			Electrolytic capa		-	·		size, 10mmx12.5mm
67			Electrolytic capa					size:8mmx12mm
68			Electrolytic soli		-	560uF, 25V		size:8mmx12mm
69					ON			MOSFET, NChan, 100V
70		-	USB Type C connec					Type C connector, SMT
71			PD controller	WT6632FSG14BWTS				PD3.0/QC3.0 protocal controller
72	1	ZD5	Zener	MM3Z10VT1G	ON	10V	S0D323	GENERIC ZENER-DIODE

DI	N05105/D
BOM ((Continued)

Item	Qty	Reference	Туре	Part Name	MFR	Value	Package	Description
73	1	ZD2	Zener	MM3Z24VT1G	ON	24V	S0D323	GENERIC ZENER-DIODE
74	4	ESD1-4	ESD	SD05T1G	ON	5V	SOD323	ESD protection device
75	2	LN	1pin connector	std	std		TH type	单根90度排针

November 2017, Rev. 0 www.onsemi.com 20

DN05105/D
References
ON Semiconductor datasheet for NCP1342/4306/, NTMFS6B03, ATP104
ON Semiconductor Design Notes DN05043
CanYon semiconductor datasheet for WT6632F
Disclaimer : ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.
Design note created by; e-mail: david.dou@onsemi.com