12V out, 120W Synchronous 4-Switch

 Buck-Boost Regulator
DESCRIPTIOn

Demonstration circuit 2825A is a 4 -switch synchronous buck-boost regulator that demonstrates the medium power capability of the LT®8390. The output is 12 V and the maximum output current is 10 A for up to 120 W power delivery. The switching frequency is 300 kHz and efficiency can exceed 96\%.

The steady-state operating input voltage range of DC2825A in which the temperature of the components is less than $90^{\circ} \mathrm{C}$ is from 9 V to 22 V . The transient operating input voltage range of DC2825A is from 7 V to 36 V . The output voltage and EN/UVLO are all programmed by resistor dividers. EN/UVLO is set so the circuit will turn off when the input voltage falls below 7 V and will turn on when the input voltage rises above 8 V .

DC2825A features MOSFETs that complement the 5 V gate drive of the LT8390 to achieve high efficiency. 40V AEC-Q101 MOSFETs are used on the input and output side of the 4 -switch topology. Ceramic capacitors are used at both the circuit input and output because of their small size and high ripple current capability. In addition to ceramic capacitors, there are hybrid polymer aluminum electrolytic capacitors at the input and output to mitigate the effects of the input and output transients.
The PCB has large copper planes and extensive vias for excellent high power thermal performance. There are four mounting holes on the board for optional heat sink and fan, which can push the output power of DC2825A up to 180 W . For more details, please consult the factory for assistance.

The CTRL input is pulled up to the $V_{\text {REF }}$ pin through a 0Ω resistor to set the output current limit to its maximum; an external voltage on CTRL can be used to lower the current limit if the resistor is removed. A capacitor at the SS pin programs soft-start.

To improve the EMI performance, the LT8390 has spread spectrum frequency modulation. With the SYNC/SPRD pin tied to INTV ${ }_{\text {CC }}$, LT8390 spreads its switching frequency $\pm 15 \%$ around the programmed oscillator frequency.

The PGOOD status flag indicates when output voltage is within $\pm 10 \%$ of the final regulation voltage.

The LT8390's proprietary peak current mode buck-boost architecture ensures DC2825A runs either in discontinuous conduction mode (DCM) or pulse-skipping mode (PSM) without reverse inductor current. Both modes enhance the light load efficiency.

The demo circuit is designed to be easily reconfigured to suit other applications, including the example schematics in the data sheet. Consult the factory for assistance.

High power operation, 4-switch buck-boost topology, proprietary peak current mode architecture, fault protection and output current monitoring make the LT8390 attractive for high power voltage regulator circuits and also circuits that require output current regulation such as battery chargers. The LT8390EFE is available in a thermally enhanced 28 lead TSSOP package. The LT8390 data sheet must be read in conjunction with this demo manual to properly use or modify demo circuit DC2825A.
Design files for this circuit board are available.

[^0]
DEMO MANUAL DC2825A

PERFORMARCE SUMMARY
 Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range ($\mathrm{V}_{\text {IN }}$)	$\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$	7		36	V
Full Load (10A) Input Voltage Range (VIN)	Component Temperature $<90^{\circ} \mathrm{C}$ with No Airflow	9		22	V
Output Voltage (V $\mathrm{V}_{\text {OUT }}$)	R7 = 110k, R8 = 10k	11.5	12.0	12.5	V
Output Voltage Ripple	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~A}$		70		$m V_{P-p}$
Maximum Output Current	$9 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 22 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}$	10			A
Switching Frequency	R5 $=140 \mathrm{k}$		300		kHz
Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~A}$		95		\%
Input EN Voltage	$\mathrm{R} 9=374 \mathrm{k}, \mathrm{R} 10=78.7 \mathrm{k}$		8		V
Input UVLO Voltage	$\mathrm{R} 9=374 \mathrm{k}, \mathrm{R} 10=78.7 \mathrm{k}$		7		V
Output Current Limit (IOUT)	$\mathrm{R} 3=8 \mathrm{~m} \Omega$		12.5		A
Peak Switch Current Limit	$\mathrm{R} 1=2 \mathrm{~m} \Omega$	17.5	25	32.5	A
$\mathrm{V}_{\text {ISMON }}$	$\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~A}$		1.05		V

DEMO MANUAL DC2825A

PUICK START PROCEDURE

The DC2825A is easy to set up to evaluate the performance of the LT8390EFE. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below.

NOTE: Make sure that the voltage applied to $\mathrm{V}_{\text {IN }}$ does not exceed 40 V , which is the voltage rating for the input side MOSFETs.

1. Set JP1 at NO SSFM/SYNC to disable SSFM, at SSFM ON to enable SSFM, or at EXT SYNC and connect an external oscillator to EXT SYNC.
2. Connect the EN/UVLO terminal to ground with a clip-on lead. Connect the power supply (with power off), load, and meters as shown.
3. After all connections are made, turn on the input power and verify that the input voltage is between 9 V and 22 V .
4. Remove the clip-on lead from EN/UVLO. Verify that the output voltage is 12 V .

NOTE: If the output voltage is low, temporarily disconnect the load to make sure that it is not set too high.
5. Once the proper output voltage is established, adjust the input voltage and load within the operating ranges and observe the output voltage regulation, ripple voltage, efficiency and other parameters.

Figure 1. Test Procedure Setup Drawing for DC2825A

DEMO MANUAL DC2825A

TEST RESULTS

Figure 2. Efficiency vs V_{IN} at Full Load (I $\mathrm{I}_{\text {OUT }}=10 \mathrm{~A}$, SSFM OFF)

Figure 3. Efficiency vs $\mathrm{I}_{\text {OUT }}$ at Different $\mathrm{V}_{\text {IN }}$ (SSFM OFF)

Figure 4. Output Voltage Load Transient Response $\left(V_{I N}=12 V, V_{\text {OUT }}=12 V, I_{\text {OUT }}=5 A\right.$ to 10 A to 5 A$)$

DEMO MANUAL DC2825A

TEST RESULTS

Figure 5. Output Voltage Ripple Measured at $C 41\left(\mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~A}\right)$

Figure 6. Loop Gain Bode Plot $\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~A}\right)$

DEMO MANUAL DC2825A

THERMAL IMAGES

Two example thermal images show the temperature profile of the DC2825A. The test is done in still air at room temperature $\left(25^{\circ} \mathrm{C}\right)$ at 10A full load current with spread spectrum frequency modulation (SSFM). Figure 7
shows a result when the input voltage is 12 V ; the highest temperature is lower than $70^{\circ} \mathrm{C}$. Figure 8 shows a result with worst-case conditions (lowest input voltage in the 4-switch buck-boost region; the highest temperature is below $90^{\circ} \mathrm{C}$, near the power MOSFET (M3).

Figure 7. Temperature at Normal Case $\left(V_{I N}=12 V, V_{O U T}=12 V, I_{O U T}=10 A, S S F M O N\right)$

Figure 8. Temperature at Worst-Case $\left(V_{I N}=9.25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~A}, \mathrm{SSFM} O N\right)$

DEMO MANUAL DC2825A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	C1	CAP, 14F, X7R, 50V, 10\%, 0603	AVX, 06035C105KAT2A
2	1	C2	CAP, 4.7 ${ }^{\text {F }}$, X5R, 10V, 10\%, 0603	AVX, 0603ZD475KAT2A
3	1	C3	CAP, 0.47 F , X7R, 16V, 10\%, 0603, AEC-Q200	MURATA, GCM188R71C474KA55D
4	1	C4	CAP, 2200pF, X7R, 25V, 10\%, 0603	AVX, 06033C222KAT2A
5	3	C5, C7, C8	CAP, $0.1 \mu \mathrm{~F}, \mathrm{X} 7 \mathrm{R}, 16 \mathrm{~V}, 10 \%$, 0603, AEC-Q200	KEMET, C0603C104K4RACAUTO
6	2	C6, C25	CAP, 14F, X7R, 25V, 10\%, 0603, AEC-Q200	MURATA, GCM188R71E105KA64D
7	8	C9 T0 C12, C37 T0 C40	CAP, 10 ${ }^{\text {F , X }}$ 7R, 50V, 10\%, 1210	MURATA, GRM32ER71H106KA12L
8	4	C13 T0 C16	CAP, 22 $\mu \mathrm{F}, \mathrm{X} 7 \mathrm{R}, 16 \mathrm{~V}, 20 \%$, 1210, AEC-Q200	MURATA, GCM32ER71C226ME19L
9	4	C18, C20, C43, C44	CAP, $120 \mu \mathrm{~F}$, ALUM ELECT, $50 \mathrm{~V}, 20 \%, 10 \mathrm{~mm} \times 0.2 \mathrm{~mm}$ SMD, RADIAL, AEC-Q200	PANASONIC, EEHZC1H121P
10	2	C21, C23	CAP, $470 \mu \mathrm{~F}, \mathrm{ALUM}$ ELECT, $16 \mathrm{~V}, 20 \%, 10 \mathrm{~mm} \times 10 \mathrm{~mm}$, RADIAL, AEC-Q200	NIPPON CHEMI-CON, HHXB160ARA471MJAOG
11	4	C35, C36, C45, C46	CAP, $0.1 \mu \mathrm{~F}, \mathrm{X} 7 \mathrm{R}, 50 \mathrm{~V}, 10 \%$, 0402, AEC-Q200	MURATA, GCM155R71H104KE02D
12	2	C41, C51	CAP, $0.1 \mu \mathrm{~F}, \mathrm{X7R}, 25 \mathrm{~V}, 10 \%$, 0402	AVX, 04023C104KAT2A
13	10	FB1 T0 FB10	IND, 120Ω AT 100MHz, FERRITE BEAD, 25\%, 3.5A, $20 \mathrm{~m} \Omega$, 1206, AEC-Q200	MURATA, BLM31PG121SH1L
14	1	L1	IND, $3.3 \mu \mathrm{H}, \mathrm{PWR}, 20 \%, 25 \mathrm{~A}, 4.10 \mathrm{~m} \Omega, 11.8 \mathrm{~mm} \times 10.5 \mathrm{~mm}$, XAL1010, AEC-Q200	COILCRAFT, XAL1010-332MEB
15	1	L2	IND, $0.45 \mu \mathrm{H}, \mathrm{PWR}, 20 \%, 52 \mathrm{~A}, 0.72 \mathrm{~m} \Omega$, $11.8 \mathrm{~mm} \times 10.5 \mathrm{~mm}$, XAL1010, AEC-Q200	COILCRAFT, XAL1010-451MEB
16	4	M1 T0 M4	XSTR, MOSFET, N-CH, 40V, 100A, TDSON-8, AEC-Q101	INFINEON, IPC100N04S5L-1R9
17	1	R1	RES, 0.002Ω, 2%, 3W, 2512, LONG-SIDE TERM, METAL, SENSE, AEC-Q200	SUSUMU, KRL6432E-M-R002-G-T1
18	1	R3	RES, $0.008 \Omega, 1 \%, 3 W, 2512$, LONG-SIDE TERM, METAL, SENSE, AEC-Q200	SUSUMU, KRL6432E-M-R008-F-T1
19	1	R5	RES, 140k , 1\%, 1/10W, 0603, AEC-Q200	PANASONIC, ERJ3EKF1403V
20	1	R6	RES, 39k , 1\%, 1/10W, 0603, AEC-Q200	PANASONIC, ERJ3EKF3902V
21	1	R7	RES, 110k 2 , 1\%,1/10W, 0603, AEC-Q200	PANASONIC, ERJ3EKF1103V
22	1	R8	RES, 10k Ω, 1\%, 1/10W, 0603, AEC-Q200	VISHAY, CRCW060310KOFKEA
23	1	R9	RES, 374k $, 1 \%, 1 / 10 \mathrm{~W}, 0603$, AEC-Q200	PANASONIC, ERJ3EKF3743V
24	1	R10	RES, $78.7 \mathrm{k} \Omega, 1 \%, 1 / 10 \mathrm{~W}, 0603$, AEC-Q200	PANASONIC, ERJ3EKF7872V
25	1	R11	RES, 100k 2 , 1\%, 1/10W, 0603, AEC-Q200	PANASONIC, ERJ3EKF1003V
26	2	R12, R13	RES, $10 \Omega, 5 \%, 1 / 10 \mathrm{~W}, 0603$, AEC-Q200	PANASONIC, ERJ3GEYJ100V
27	4	R14 T0 R17	RES, $5.1 \Omega, 1 \%, 1 / 10 \mathrm{~W}, 0603$, AEC-Q200	VISHAY, CRCW06035R10FKEA
28	2	R18, R19	RES, 0 2 , 1/10W, 0603, AEC-Q200	PANASONIC, ERJ3GEYOROOV
29	1	U1	IC, 4-SWITCH BUCK BOOST CTRLR, TSSOP-28	ANALOG DEVICES INC, LT8390EFE\#PBF

DEMO MANUAL DC2825A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Additional Demo Board Circuit Components				
30	0	C26, C28	CAP, OPTION, 0603	
31	0	C29, C30	CAP, OPTION, 0805	
32	0	C47 T0 C50	CAP, OPTION, 1210	
33	0	C52, C53	CAP, OPTION, ALUM ELECT, SMD	
34	0	D1, D2	DIODE, OPTION, SMB	
35	0	R21 T0 R24	RES, OPTION, 0603	
36	0	R28, R29	RES, OPTION, 0805	

Hardware: For Demo Board Only

37	10	E1 TO E10	TEST POINT, TURRET, 0.094" MTG HOLE, PCB 0.062" THICK	MILL-MAX, 2501-2-00-80-00-00-07-0
38	4	J1 T0 J4	CONN, BANANA JACK, FEMALE, THT, NON-INSULATED, SWAGE, 0.218"	KEYSTONE, 575-4
39	1	JP1	CONN, HDR, MALE, $2 \times 3,2 m m$, VERT, STR, THT	WURTH ELEKTRONIK, 62000621121
40	4	MH1 T0 MH4	STANDOFF, NYLON, SNAP-ON, 0.375"	WURTH ELEKTRONIK, 702933000
41	1	XJP1	CONN, SHUNT, FEMALE, 2 POS, 2mm	WURTH ELEKTRONIK, 60800213421

SCHEMATIC DIAGRAM

[^1]
Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($\$ 100.00$). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed

[^0]: All registered trademarks and trademarks are the property of their respective owners

[^1]: A

 ## ESD Caution

 ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

